AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Lattice-strained nanotubes facilitate efficient natural sunlight-driven CO2 photoreduction

Shujie Liang1,§Xueming Liu1,§Zuqi Zhong1Bin Han1Xiaohui Zhong1Weiyi Chen1Kainan Song1Hong Deng1,2( )Zhang Lin1,2
School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou 510006, China

§ Shujie Liang and Xueming Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Photocatalytic reduction of CO2 holds tremendous promise for alleviating the energy crisis. Despite the progress that has been made, there are still some challenges to overcome, such as the realization under real sunlight rather than the simulation condition. In this work, ultrathin Ni2(OH)(PO4) nanotubes (NTs) prepared through hydrothermal route are applied as a novel catalyst for photocatalytic reduction of CO2 under real sunlight. The prepared Ni2(OH)(PO4) NTs exhibit a 11.3 µmol·h-1 CO production rate with 96.1% CO selectivity. Interestingly, Ni2(OH)(PO4) NTs have a positive impact on the facilitation of photoreduction in diluted CO2. Notably, when the system is performed under real sunlight, Ni2(OH)(PO4) NTs afford an accumulated CO of ca. 26.8 μmol with 96.9% CO selectivity, exceeding most previous inorganic catalysts under simulated irradiation in the laboratory. Our experimental results demonstrate that the multisynergetic effects induced by surface-OH and the lattice strain serve as highly active sites for CO2 molecular adsorption and activation as well as electron transfer, hence enhancing photoreduction activity. Therefore, this work provides experimental basis that CO2 photocatalysis can be put into practical use.

Electronic Supplementary Material

Download File(s)
12274_2020_3252_MOESM1_ESM.pdf (1.9 MB)

References

[1]
Lin, R.; Ma, X. L.; Cheong, W. C.; Zhang, C.; Zhu, W.; Pei, J. J.; Zhang, K. Y.; Wang, B.; Liang, S. Y.; Liu, Y. X. et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 2019, 12, 2866-2871.
[2]
Chen, W. Y.; Han, B.; Tian, C.; Liu, X. M.; Liang, S. J.; Deng, H.; Lin, Z. MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction. Appl. Catal. B 2019, 244, 996-1003.
[3]
Liu, L. F.; Zhang, J. L.; Tan, X. N.; Zhang, B. X.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Han, B. X.; Zheng, L. R.; Zhang, F. Y. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983-988.
[4]
Wang, H. P.; Zhang, L.; Wang, K. F.; Sun, X.; Wang, W. Z. Enhanced photocatalytic CO2 reduction to methane over WO3·0.33H2O via Mo doping. Appl. Catal. B 2019, 243, 771-779.
[5]
Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811-16815.
[6]
Wang, Y.; Huang, N. Y.; Shen, J. Q.; Liao, P. Q.; Chen, X. M.; Zhang, J. P. Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 2018, 140, 38-41.
[7]
Yi, L.; Zhao, W. H.; Huang, Y. H.; Wu, X. Y.; Wang, J. L.; Zhang, G. K. Tungsten bronze Cs0.33WO3 nanorods modified by molybdenum for improved photocatalytic CO2 reduction directly from air. Sci. China Mater. 2020, 63, 2206-2214.
[8]
Wu, J.; Li, X. D.; Shi, W.; Ling, P. Q.; Sun, Y. F.; Jiao, X. C.; Gao, S.; Liang, L.; Xu, J. Q.; Yan, W. S. et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem., Int. Ed. 2018, 130, 8855-8859.
[9]
Chen, S. C.; Wang, H.; Kang, Z. X.; Jin, S.; Zhang, X. D.; Zheng, X. S.; Qi, Z. M.; Zhu, J. F.; Pan, B. C.; Xie, Y. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nat. Commun. 2019, 10, 788.
[10]
Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P. D.; Yaghi, O. M. Plasmon-enhanced photocatalytic CO2 conversion within metal- organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356-362.
[11]
Xia, Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Liu, G. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci. China Mater. 2020, 63, 552-565.
[12]
You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001.
[13]
Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265-3278.
[14]
Zhu, H.; Gao, G. H.; Du, M. L.; Zhou, J. H.; Wang, K.; Wu, W. B.; Chen, X.; Li, Y.; Ma, P. M.; Dong, W. F. et al. Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 2018, 30, 1707301.
[15]
Wang, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 363, 870-874.
[16]
Hwang, D. Y.; Choi, K. H.; Park, J. E.; Suh, D. H. Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS2 nano-scrolls. Phys. Chem. Chem. Phys. 2017, 19, 18356-18365.
[17]
Ding, F.; Ji, H. X.; Chen, Y. H.; Herklotz, A.; Dörr, K.; Mei, Y. F.; Rastelli, A.; Schmidt, O. G. Stretchable graphene: A close look at fundamental parameters through biaxial straining. Nano Lett. 2010, 10, 3453-3458.
[18]
Ni, B.; Liu, H. L.; Wang, P. P.; He, J.; Wang, X. General synthesis of inorganic single-walled nanotubes. Nat. Commun. 2015, 6, 8756.
[19]
Krasilin, A. A.; Nevedomsky, V. N.; Gusarov, V. V. Comparative energy modeling of multiwalled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 nanoscroll growth. J. Phys. Chem. C 2017, 121, 12495-12502.
[20]
Lourenço, M. P.; de Oliveira, C.; Oliveira, A. F.; Guimarães, L.; Duarte, H. A. Structural, electronic, and mechanical properties of single-walled chrysotile nanotube models. J. Phys. Chem. C 2012, 116, 9405-9411.
[21]
Huang, H. W.; Jia, H. H.; Liu, Z.; Gao, P. F.; Zhao, J. T.; Luo, Z. L.; Yang, J. L.; Zeng, J. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew. Chem., Int. Ed. 2017, 56, 3594-3598.
[22]
Bian, W.; Huang, Y. C.; Xu, X. B.; Din, M. A. U.; Xie, G.; Wang, X. Iron hydroxide-modified nickel hydroxylphosphate single-wall nanotubes as efficient electrocatalysts for oxygen evolution reactions. ACS Appl. Mater. Interfaces 2018, 10, 9407-9414.
[23]
Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537-541.
[24]
Ma, B.; Zhao, J. P.; Ge, Z. H.; Chen, Y. T.; Yuan, Z. H. 5 nm NiCoP nanoparticles coupled with g-C3N4 as high-performance photocatalyst for hydrogen evolution. Sci. China Mater. 2020, 63, 258-266.
[25]
Yang, Z. B.; Liang, X. Self-magnetic-attracted NixFe(1-x)@NixFe(1-x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Res. 2020, 13, 461-466.
[26]
Di, J.; Zhu, C.; Ji, M. X.; Duan, M. L.; Long, R.; Yan, C.; Gu, K. Z.; Xiong, J.; She, Y. B.; Xia, J. X. et al. Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 14847-14851.
[27]
Xiong, Y. J.; Ma, Y. N.; Zou, L. L.; Han, S. B.; Chen, H.; Wang, S.; Gu, M.; Shen, Y.; Zhang, L. P.; Xia, Z. H. et al. N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction. J. Catal. 2020, 382, 247-255.
[28]
Han, B.; Song, J. N.; Liang, S. J.; Chen, W. Y.; Deng, H.; Ou, X. W.; Xu, Y. J.; Lin, Z. Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: Adsorption and active sites engineering. Appl. Catal. B 2020, 260, 118208.
[29]
Han, B.; Ou, X. W.; Zhong, Z. Q.; Liang, S. J.; Deng, H.; Lin, Z. Rational design of FeNi bimetal modified covalent organic frameworks for photoconversion of anthropogenic CO2 into widely tunable syngas. Small 2020, 16, 2002985.
[30]
Liang, X.; Wang, X.; Zhuang, J.; Chen, Y.; Wang, D.; Li, Y. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 2006, 16, 1805-1813.
[31]
Wang, Z. Y.; Jiang, M.; Qin, J. N.; Zhou, H.; Ding, Z. X. Reinforced photocatalytic reduction of CO2 to CO by a ternary metal oxide NiCo2O4. Phys. Chem. Chem. Phys. 2015, 17, 16040-16046.
[32]
Wang, S. B.; Guan, B. Y.; Lou, X. W. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy Environ. Sci. 2018, 11, 306-310.
[33]
Wang, Y.; Wang, S. B.; Zhang, S. L.; Lou, X. W. D. Formation of hierarchical FeCoS2-CoS2 double-shelled nanotubes with enhanced performance for photocatalytic reduction of CO2. Angew. Chem., Int. Ed. 2020, 132, 12016-12020.
[34]
Chen, W. Y.; Han, B.; Xie, Y. L.; Liang, S. J.; Deng, H.; Lin, Z. Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem. Eng. J. 2020, 391, 123519.
[35]
Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665-2672.
[36]
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[37]
Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.
[38]
Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427-2431.
[39]
Leng, F. C.; Liu, H.; Ding, M. L.; Lin, Q. P.; Jiang, H. L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters. ACS Catal. 2018, 8, 4583-4590.
[40]
Huang, L. X.; Han, B.; Huang, X. H.; Liang, S. J.; Deng, Z. Q.; Chen, W. Y.; Peng, M.; Deng, H. Ultrathin 2D/2D ZnIn2S4/MoS2 hybrids for boosted photocatalytic hydrogen evolution under visible light. J. Alloys Compd. 2019, 798, 553-559.
[41]
Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749-2759.
[42]
Li, P.; Liu, W.; Dennis, J. S.; Zeng, H. C. Synthetic architecture of MgO/C nanocomposite from hierarchical-structured coordination polymer toward enhanced CO2 capture. ACS Appl. Mater. Interfaces 2017, 9, 9592-9602.
[43]
Zhang, Y. Z.; Xia, B. Q.; Ran, J. R.; Davey, K.; Qiao, S. Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 2020, 10, 1903879.
[44]
Liu, B.; Li, C. M.; Zhang, G. Q.; Yao, X. S.; Chuang, S. S. C.; Li, Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catal. 2018, 8, 10446-10456.
[45]
Torres, J. A.; Nogueira, A. E.; da Silva, G. T. S. T.; Lopes, O. F.; Wang, Y. J.; He, T.; Ribeiro, C. Enhancing TiO2 activity for CO2 photoreduction through MgO decoration. J. CO2 Util. 2020, 35, 106-114.
[46]
Meng, X. G.; Ouyang, S. X.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. H. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem. Commun. 2014, 50, 11517-11519.
[47]
Yang, Y.; Wu, J. J.; Xiao, T. T.; Tang, Z.; Shen, J. Y.; Li, H. J.; Zhou, Y.; Zou, Z. G. Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction. Appl. Catal. B 2019, 255, 117771.
[48]
Chen, Y. Z.; Li, H. L.; Zhao, W. H.; Zhang, W. B.; Li, J. W.; Li, W.; Zheng, X. S.; Yan, W. S.; Zhang, W. H.; Zhu, J. F. et al. Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity. Nat. Commun. 2019, 10, 1885.
[49]
Dong, Y. C.; Ghuman, K. K.; Popescu, R.; Duchesne, P. N.; Zhou, W. J.; Loh, J. Y. Y.; Jelle, A. A.; Jia, J.; Wang, D.; Mu, X. K. et al. Tailoring surface frustrated Lewis pairs of In2O3-x(OH)y for gas-phase heterogeneous photocatalytic reduction of CO2 by isomorphous substitution of In3+ with Bi3+. Adv. Sci. 2018, 5, 1700732.
[50]
Zhu, W.; Zhang, C. F.; Li, Q.; Xiong, L. K.; Chen, R. X.; Wan, X. B.; Wang, Z.; Chen, W.; Deng, Z.; Peng, Y. Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Appl. Catal. B 2018, 238, 339-345.
[51]
Petrie, J. R.; Jeen, H.; Barron, S. C.; Meyer, T. L.; Lee, H. N. Enhancing perovskite electrocatalysis through strain tuning of the oxygen deficiency. J. Am. Chem. Soc. 2016, 138, 7252-7255.
[52]
Jansonius, R. P.; Reid, L. M.; Virca, C. N.; Berlinguette, C. P. Strain engineering electrocatalysts for selective CO2 reduction. ACS Energy Lett. 2019, 4, 980-986.
[53]
Chen, W. Y.; Liu, X. M.; Han, B.; Liang, S. J.; Deng, H.; Lin, Z. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. in press, .
Nano Research
Pages 2558-2567
Cite this article:
Liang S, Liu X, Zhong Z, et al. Lattice-strained nanotubes facilitate efficient natural sunlight-driven CO2 photoreduction. Nano Research, 2021, 14(8): 2558-2567. https://doi.org/10.1007/s12274-020-3252-4
Topics:

748

Views

19

Crossref

N/A

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 22 September 2020
Revised: 16 November 2020
Accepted: 19 November 2020
Published: 08 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return