AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An ultra-stable microporous supramolecular framework with highly selective adsorption and separation of water over ethanol

Zhengyi Di1,2Jiandong Pang1Falu Hu1( )Mingyan Wu1( )Maochun Hong1
State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
University of Chinese Academy of Sciences, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

A microporous supramolecular framework with high water and thermal stability can selectively absorb water molecules over methanol or ethanol due to the suitable channels. The model separation test on columns shows that an ultra-pure ethanol (99.9%) can be obtained from the mixture of ethanol/water (95:5). Additionally, after refluxing the desolvated sample in 95% ethanol at 60 °C for 5 h, the purity of ethanol rises up to 97.43%, which is obviously higher than 96.56% for 4 Å molecular sieves.

Electronic Supplementary Material

Download File(s)
12274_2020_3258_MOESM1_ESM.pdf (3.7 MB)

References

[1]
Uchida, S.; Mizuno, N. Zeotype ionic crystal of Cs5[Cr3O(OOCH)6(H2O)3][α-CoW12O40]·7.5H2O with shape-selective adsorption of water. J. Am. Chem. Soc. 2004, 126, 1602-1603.
[2]
Hill, J.; Nelson, E.; Tilman, D.; Polasky, S.; Tiffany, D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 103, 11206-11210.
[3]
El-Roz, M.; Bazin, P.; Čelič, T. B.; Logar, N. Z.; Thibault-Starzyk, F. Pore occupancy changes water/ethanol separation in a metal-organic framework-quantitative map of coadsorption by IR. J. Phys. Chem. C 2015, 119, 22570-22576.
[4]
Naik, P. V.; Wee, L. H.; Meledina, M.; Turner, S.; Li, Y. B.; Van Tendeloo, G.; Martens, J. A.; Vankelecom, I. F. J. PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation. J. Mater. Chem. A 2016, 4, 12790-12798.
[5]
Shin, Y.; Taufique, M. F. N.; Devanathan, R.; Cutsforth, E. C.; Lee, J.; Liu, W.; Fifield, L. S.; Gotthold, D. W. Highly selective supported graphene oxide membranes for water-ethanol separation. Sci Rep. 2019, 9, 2251.
[6]
de Lima, G. F.; Mavrandonakis, A.; de Abreu, H. A.; Duarte, H. A.; Heine, T. Mechanism of alcohol-water separation in metal-organic frameworks. J. Phys. Chem. C 2013, 117, 4124-4130.
[7]
Lively, R. P.; Dose, M. E.; Thompson, J. A.; McCool, B. A.; Chance, R. R.; Koros, W. J. Ethanol and wateradsorption in methanol-derived ZIF-71. Chem. Commun. 2011, 47, 8667-8669.
[8]
Sha, Y. F.; Bai, S. Z.; Lou, J. Y.; Wu, D.; Liu, B. Z.; Ling, Y. Tuning the adsorption behaviors of water, methanol, and ethanol in a porous material by varying the flexibility of substituted groups. Dalton Trans. 2016, 45, 7235-7239.
[9]
Zhang, Y. J.; Chen, C.; Cai, L. X.; Tan, B.; Yang, X. D.; Zhang, J.; Ji, M. Post-cycloaddition modification of a porous MOF for improved GC separation of ethanol and water. Dalton Trans. 2017, 46, 7092-7097.
[10]
Zhou, H.; Mouzon, J.; Farzaneh, A.; Antzutkin, O. N.; Grahn, M.; Hedlund, J. Colloidal defect-free silicalite-1 single crystals: Preparation, structure characterization, adsorption, and separation properties for alcohol/water mixtures. Langmuir 2015, 31, 8488-8494.
[11]
Borjigin, T.; Sun, F. X.; Zhang, J. L.; Cai, K.; Ren, H.; Zhu, G. S. A microporous metal-organic framework with high stability for GC separation of alcohols from water. Chem. Commun. 2012, 48, 7613-7615.
[12]
Sun, J. K.; Ji, M.; Chen, C.; Wang, W. G.; Wang, P.; Chen, R. P.; Zhang, J. A charge-polarized porous metal-organic framework for gas chromatographic separation of alcohols from water. Chem. Commun. 2013, 49, 1624-1626.
[13]
Kim, H.; Yang, S.; Rao, S. R.; Narayanan, S.; Kapustin, E. A.; Furukawa, H.; Umans, A. S.; Yaghi, O. M.; Wang, E. N. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 2017, 356, 430-434.
[14]
Xu, J. Y.; Zhu, C. Q.; Wang, Y. F.; Li, H.; Huang, Y. F.; Shen, Y. T.; Francisco, J. S.; Zeng, X. C.; Meng, S. Water transport through subnanopores in the ultimate size limit: Mechanism from molecular dynamics. Nano Res. 2019, 12, 587-592.
[15]
Krishna, R. Separating mixtures by exploiting molecular packing effects in microporous materials. Phys. Chem. Chem. Phys. 2015, 17, 39-59.
[16]
Cadiau, A.; Belmabkhout, Y.; Adil, K.; Bhatt, P. M.; Pillai, R. S.; Shkurenko, A.; Martineau-Corcos, C.; Maurin, G.; Eddaoudi, M. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science 2017, 356, 731-735.
[17]
Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673-674.
[18]
Li, H.; Li, L. B.; Lin, R. B.; Zhou, W.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem 2019, 1, 100006.
[19]
Kawano, M.; Fujita, M. Direct observation of crystalline-state guest exchange in coordination networks. Coord. Chem. Rev. 2007, 251, 2592-2605.
[20]
Zhang, J. P.; Liao, P. Q.; Zhou, H. L.; Lin, R. B.; Chen, X. M. Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem. Soc. Rev. 2014, 43, 5789-5814.
[21]
He, W. Y.; Ren, X. Y.; Yan, Z. Q.; Wang, J.; Lu, L. H. Porous β-cyclodextrin nanotubular assemblies enable high-efficiency removal of bisphenol micropollutants from aquatic systems. Nano Res. 2020, 13, 1933-1942.
[22]
Lu, C.; Li, Z. Z.; Xia, Z.; Ci, H. N.; Cai, J. S.; Song, Y. Z.; Yu, L. H.; Yin, W. J.; Dou, S. X.; Sun, J. Y. et al. Confining MOF-derived snse nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res. 2019, 12, 3051-3058.
[23]
Hanikel, N.; Prévot, M. S.; Fathieh, F.; Kapustin, E. A.; Lyu, H.; Wang, H. Z.; Diercks, N. J.; Glover, T. G.; Yaghi, O. M. Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent. Sci. 2019, 5, 1699-1706.
[24]
Kalmutzki, M. J.; Diercks, C. S.; Yaghi, O. M. Metal-organic frameworks for water harvesting from air. Adv. Mater. 2018, 30, 1704304.
[25]
Kim, H.; Rao, S. R.; Kapustin, E. A.; Zhao, L.; Yang, S.; Yaghi, O. M.; Wang, E. N. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 2018, 9, 1191.
[26]
Seo, Y. K.; Yoon, J. W.; Lee, J. S.; Hwang, Y. K.; Jun, C. H.; Chang, J. S.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M. et al. Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents. Adv. Mater. 2012, 24, 806-810.
[27]
Jia, W.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration. Nano Res. 2020, 13, 2973-2978.
[28]
Hu, J. F.; Xu, Y. Q.; Zhang, D. K.; Chen, B. K.; Lin, Z. G.; Hu, C. W. A highly symmetric ionic crystal constructed by polyoxoniobates and cobalt complexes for preferential water uptake over alcohols. Inorg. Chem. 2017, 56, 10844-10847.
[29]
Slabbert, C.; Rademeyer, M. One-dimensional halide-bridged polymers of metal cations with mono-heterocyclic donor ligands or cations: A review correlating chemical composition, connectivity and chain conformation. Coord. Chem. Rev. 2015, 288, 18-49.
[30]
Hwang, I. H.; Jo, Y. D.; Kim, H.; Kim, K. B.; Jung, K. D.; Kim, C.; Kim, Y.; Kim, S. J. Catalytic transesterification reactions of one-dimensional coordination polymers containing paddle-wheel-type units connected by various bridging ligands. Inorg. Chim. Acta 2013, 402, 39-45.
[31]
Eguchi, R.; Uchida, S.; Mizuno, N. Inverse and high CO2/C2H2 sorption selectivity in flexible organic-inorganic ionic crystals. Angew. Chem., Int. Ed. 2012, 51, 1635-1639.
[32]
Lin, X. M.; Li, T. T.; Wang, Y. W.; Zhang, L.; Su, C. Y. Two ZnII metal-organic frameworks with coordinatively unsaturated metal sites: Structures, adsorption, and catalysis. Chem. Asian J. 2012, 7, 2796-2804.
[33]
Zhang, K. L.; Zhong, Z. Y.; Zhang, L.; Jing, C. Y.; Daniels, L. M.; Walton, R. I. Synthesis, characterization and properties of a family of lead(II)-organic frameworks based on a multi-functional ligand 2-amino-4-sulfobenzoic acid exhibiting auxiliary ligand-dependent dehydration-rehydration behaviours. Dalton Trans. 2014, 43, 11597-11610.
[34]
Chesman, A. S. R.; Turner, D. R.; Deacon, G. B.; Batten, S. R. Transformation of a 1D to 3D coordination polymer mediated by low temperature lattice solvent loss. Chem. Commun. 2010, 46, 4899-4901.
[35]
Liu, H.; Song, C. Y.; Huang, R. W.; Zhang, Y.; Xu, H.; Li, M. J.; Zang, S. Q.; Gao, G. G. Acid-base-triggered structural transformation of a polyoxometalate core inside a dodecahedrane-like silver thiolate shell. Angew. Chem., Int. Ed. 2016, 55, 3699-3703.
[36]
Saha, R.; Biswas, S.; Dey, S. K.; Sen, A.; Roy, M.; Steele, I. M.; Dey, K.; Ghosh, A.; Kumar, S. Thermally induced single crystal to single crystal transformation leading to polymorphism. Spectrochim. Acta Part A 2014, 130, 526-533.
[37]
Yuan, S.; Deng, Y. K.; Sun, D. Unprecedented second-timescale blue/green emissions and iodine-uptake-induced single-crystal-to-single-crystal transformation in ZnII/CdII metal-organic frameworks. Chem. Eur. J. 2014, 20, 10093-10098.
[38]
Bourrelly, S.; Moulin, B.; Rivera, A.; Maurin, G.; Devautour-Vinot, S.; Serre, C.; Devic, T.; Horcajada, P.; Vimont, A.; Clet, G. et al. Explanation of the adsorption of polar vapors in the highly flexible metal organic framework MIL-53(Cr). J. Am. Chem. Soc. 2010, 132, 9488-9498.
[39]
Canivet, J.; Fateeva, A.; Guo, Y. M.; Coasne, B.; Farrusseng, D. Water adsorption in MOFs: Fundamentals and applications. Chem. Soc. Rev. 2014, 43, 5594-5617.
[40]
Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369-4381.
[41]
Khutia, A.; Rammelberg, H. U.; Schmidt, T.; Henninger, S.; Janiak, C. Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application. Chem. Mater. 2013, 25, 790-798.
[42]
Reinsch, H.; Marszalek, B.; Wack, J.; Senker, J.; Gil, B.; Stock, N. A new Al-MOF based on a unique column-shaped inorganic building unit exhibiting strongly hydrophilic sorption behaviour. Chem. Commun. 2012, 48, 9486-9488.
[43]
Jasuja, H.; Burtch, N. C.; Huang, Y. G.; Cai, Y.; Walton, K. S. Kinetic water stability of an isostructural family of zinc-based pillared metal-organic frameworks. Langmuir 2013, 29, 633-642.
[44]
Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of metal-organic frameworks by water adsorption. Micropor. Mesopor. Mater. 2009, 120, 325-330.
[45]
Ren, C. X.; Ji, M.; Yao, Q. X.; Cai, L. X.; Tan, B.; Zhang, J. Targeted functionalization of porous materials for separation of alcohol/water mixtures by modular assembly. Chem. Eur. J. 2014, 20, 14846-14852.
Nano Research
Pages 2584-2588
Cite this article:
Di Z, Pang J, Hu F, et al. An ultra-stable microporous supramolecular framework with highly selective adsorption and separation of water over ethanol. Nano Research, 2021, 14(8): 2584-2588. https://doi.org/10.1007/s12274-020-3258-y
Topics:

726

Views

18

Crossref

16

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 08 September 2020
Revised: 19 November 2020
Accepted: 22 November 2020
Published: 09 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return