AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Discretely-supported nanoimprint lithography for patterning the high-spatial-frequency stepped surface

Chunhui Wang§Yu Fan§Jinyou Shao ( )Zhengjie YangJiaxing SunHongmiao TianXiangming Li
Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China

§ Chunhui Wang and Yu Fan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Non-planar morphology is a common feature of devices applied in various physical fields, such as light or fluid, which pose a great challenge for surface nano-patterning to improve their performance. The present study proposes a discretely-supported nanoimprint lithography (NIL) technique to fabricate nanostructures on the extremely non-planar surface, namely high-spatial-frequency stepped surface. The designed discretely imprinting template implanted a discretely-supported intermediate buffer layer made of sparse pillars arrays. This allowed the simultaneous generation of air-cushion-like buffer and reliable support to the thin structured layer in the template. The resulting low bending stiffness and distributed concentrated load of the template jointly overcome the contact difficulty with a stepped surface, and enable the template to encase the stepped protrusion as tight as possible. Based on the proposed discretely-supported NIL, nanostructures were fabricated on the luminous interface of light emitting diodes chips that covered with micrometer step electrodes pad. About 96% of the utilized indium tin oxide transparent current spreading layer surface on top of the light emitting diode (LED) chips was coated with nanoholes array, with an increase by more than 40% in the optical output power. The excellent ability of nanopatterning a non-planar substrate could potentially lead innovate design and development of high performance device based on discretely-supported NIL.

Electronic Supplementary Material

Download File(s)
12274_2020_3261_MOESM1_ESM.pdf (3.2 MB)

References

[1]
Zhang, P.; Zhou, X.; He, M.; Shang, Y. Q.; Tetlow, A. L.; Godwin, A. K.; Zeng, Y. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 2019, 3, 438-451.
[2]
Kim, D. E.; Yu, D. I.; Jerng, D. W.; Kim, M. H.; Ahn, H. S. Review of boiling heat transfer enhancement on micro/nanostructured surfaces. Exp. Therm. Fluid Sci. 2015, 66, 173-196.
[3]
Heverhagen, J.; Tasinkevych, M.; Rahman, A.; Black, C. T.; Checco, A. Slip length enhancement in nanofluidic flow using nanotextured superhydrophobic surfaces. Adv. Mater. Interfaces 2016, 3, 1600303.
[4]
Andrew, T. L.; Tsai, H. Y.; Menon, R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 2009, 324, 917-921.
[5]
Sohn, W.; Park, H.; Yoo, G. Y.; Lee, C.; Park, S.; Kim, W. Visualization of UV by nanopatterned down-shifting materials mimicking human retinal cone cells. Adv. Funct. Mater. 2020, 30, 1905131.
[6]
Sim, K.; Chen, S.; Li, Z. W.; Rao, Z.; Liu, J. S.; Lu, Y. T.; Jang, S.; Ershad, F.; Chen, J.; Xiao, J. L. et al. Three-dimensional curvy electronics created using conformal additive stamp printing. Nat. Electron. 2019, 2, 471-479.
[7]
Guan, Y. S.; Thukral, A.; Zhang, S.; Sim, K.; Wang, X.; Zhang, Y. C.; Ershad, F.; Rao, Z.; Pan, F. J.; Wang, P. et al. Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics. Sci. Adv. 2020, 6, eabb3656.
[8]
Sun, Y.; Jallerat, Q.; Szymanski, J. M.; Feinberg, A. W. Conformal nanopatterning of extracellular matrix proteins onto topographically complex surfaces. Nat. Methods 2015, 12, 134-136.
[9]
Modaresifar, K.; Azizian, S.; Ganjian, M.; Fratila-Apachitei, L. E.; Zadpoor, A. A. Bactericidal effects of nanopatterns: A systematic review. Acta Biomater. 2019, 83, 29-36.
[10]
Moharana, A. R.; Außerhuber, H. M.; Mitteramskogler, T.; Haslinger, M. J.; Mühlberger, M. M. Multilayer nanoimprinting to create hierarchical stamp masters for nanoimprinting of optical micro- and nanostructures. Coatings 2020, 10, 301.
[11]
Park, J. H.; Park, K. Development of micropatterns on curved surfaces using two-step ultrasonic forming. Micromachines 2019, 10, 654.
[12]
Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85-87.
[13]
Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495-513.
[14]
Sreenivasan, S. V. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsyst. Nanoeng. 2017, 3, 17075.
[15]
Baek, S.; Kim, K.; Sung, Y.; Jung, P.; Ju, S.; Kim, W.; Kim, S.; Hong, S. H.; Lee, H. Solution-processable multi-color printing using UV nanoimprint lithography. Nanotechnology 2020, 31, 125301.
[16]
Liu, X. Y.; Liu, W. D.; Yang, B. Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform. Nano Res. 2019, 12, 845-853.
[17]
Colburn, M.; Johnson, S. C.; Stewart, M. D.; Damle, S.; Bailey, T. C.; Choi, B.; Wedlake, M.; Michaelson, T. B.; Sreenivasan, S. V.; Ekerdt, J. G. et al. Step and flash imprint lithography: A new approach to high-resolution patterning. In Proceedings of SPIE 3676, Emerging Lithographic Technologies III, Santa Clara, USA, 1999.
[18]
Zhu, S. Y.; Li, H. L.; Yang, M. S.; Pang, S. W. Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor. Nanoscale 2018, 10, 19927-19936.
[19]
Traub, M. C.; Longsine, W.; Truskett, V. N. Advances in nanoimprint lithography. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 583-604.
[20]
Wang, C. H.; Shao, J. Y.; Tian, H. M.; Li, X. M.; Ding, Y. C.; Li, B. Q. Step-controllable electric-field-assisted nanoimprint lithography for uneven large-area substrates. ACS Nano 2016, 10, 4354-4363.
[21]
Ji, R.; Hornung, M.; Verschuuren, M. A.; van de Laar, R.; van Eekelen, J.; Plachetka, U.; Moeller, M.; Moormann, C. UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron. Eng. 2010, 87, 963-967.
[22]
Haslinger, M. J.; Mitteramskogler, T.; Kopp, S.; Leichtfried, H.; Messerschmidt, M.; Thesen, M. W.; Mühlberge, M. Development of a soft UV-NIL step&repeat and lift-off process chain for high speed metal nanomesh fabrication. Nanotechnology 2020, 31, 345301.
[23]
Dickson, M. N.; Tsao, J.; Liang, E. I.; Navarro, N. I.; Patel, Y. R.; Yee, A. F. Conformal reversal imprint lithography for polymer nanostructuring over large curved geometries. J. Vac. Sci. Technol. B 2017, 35, 021602.
[24]
Li, Z. W.; Gu, Y. N.; Wang, L.; Ge, H. X.; Wu, W.; Xia, Q. F.; Yuan, C. S.; Chen, Y. F.; Cui, B.; Williams, R. S. Hybrid nanoimprint-soft lithography with sub-15 nm resolution. Nano Lett. 2009, 9, 2306-2310.
[25]
Hu, X.; Huang, S. S.; Gu, R. H.; Yuan, C. S.; Ge, H. X.; Chen, Y. F. An oxygen-insensitive degradable resist for fabricating metallic patterns on highly curved surfaces by UV-nanoimprint lithography. Macromol. Rapid Commun. 2014, 35, 1712-1718.
[26]
Tan, L.; Kong, Y. P.; Bao, L. R.; Huang, X. D.; Guo, L. J.; Pang, S. W.; Yee, A. F. Imprinting polymer film on patterned substrates. J. Vac. Sci. Technol. B 2003, 21, 2742-2748.
[27]
Wang, C. H.; Shao, J. Y.; Lai, D. S.; Tian, H. M.; Li, X. M. Suspended-template electric-assisted nanoimprinting for hierarchical micro-nanostructures on a fragile substrate. ACS Nano 2019, 13, 10333-10342.
[28]
Bhingardive, V.; Menahem, L.; Schvartzman, M. Soft thermal nanoimprint lithography using a nanocomposite mold. Nano Res. 2018, 11, 2705-2714.
[29]
Oh, J. T.; Moon, Y. T.; Kang, D. S.; Park, C. K.; Han, J. W.; Jung, M. H.; Sung, Y. J.; Jeong, H. H.; Song, J. O.; Seong, T. Y. High efficiency ultraviolet GaN-based vertical light emitting diodes on 6-inch sapphire substrate using ex-situ sputtered AlN nucleation layer. Opt. Express 2018, 26, 5111-5117.
[30]
Nakamura, S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 1998, 281, 956-961.
[31]
Lee, K. J.; Oh, S.; Kim, S. J.; Yim, S. Y.; Myoung, N.; Lee, K.; Kim, J. S.; Jung, S. H.; Chung, T. H.; Park, S. J. Enhanced optical output in InGaN/GaN light-emitting diodes by tailored refractive index of nanoporous GaN. Nanotechnology 2019, 30, 415301.
[32]
Li, Y.; Lan, J. Y.; Wang, W. L.; Zheng, Y. L.; Xie, W. T.; Tang, X.; Kong, D. Q.; Xia, Y.; Lan, Z. B.; Li, R. Z. et al. 395 nm GaN-based near-ultraviolet light-emitting diodes on Si substrates with a high wall-plug efficiency of 52.0%@350 mA. Opt. Express 2019, 27, 7447-7457.
[33]
Wang, S. J.; Dou, X. Y.; Chen, L.; Fang, Y.; Wang, A. Q.; Shen, H. B.; Du, Z. L. Enhanced light out-coupling efficiency of quantum dot light emitting diodes by nanoimprint lithography. Nanoscale 2018, 10, 11651-11656.
[34]
Otnes, G.; Heurlin, M.; Graczyk, M.; Wallentin, J.; Jacobsson, D.; Berg, A.; Maximov, I.; Borgström, M. T. Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Res. 2016, 9, 2852-2861.
[35]
Wu, D. X.; Rajput, N. S.; Luo, X. J. C. N. Nanoimprint lithography - the past, the present and the future. Curr. Nanosci. 2016, 12, 712-724.
[36]
Sun, J. Z.; Guo, Y. Z.; Cui, B.; Chu, F. Q.; Li, H. Z.; Li, Y.; He, M.; Ding, D.; Liu, R. P.; Li, L. H. et al. Inkjet printing bendable circuits based on an oil-water interface reaction. Appl. Surf. Sci. 2018, 445, 391-397.
[37]
Jain, A.; Spann, A.; Bonnecaze, R. T. Effect of droplet size, droplet placement, and gas dissolution on throughput and defect rate in UV nanoimprint lithography. J. Vac. Sci. Technol. B 2017, 35, 011602.
[38]
Sun, J. Z.; Yun, C. H.; Cui, B.; Li, P. P.; Liu, G. P.; Wang, X.; Chu, F. Q. A facile approach for fabricating microstructured surface based on etched template by inkjet printing technology. Polymers 2018, 10, 1209.
[39]
Singhal, S.; Sreenivasan, S. V. Influence of discrete drop locations on film thickness uniformity in UV-nanoimprint lithography. Microelectron. Eng. 2016, 164, 139-144.
[40]
Huang, K. C.; Huang, Y. R.; Tseng, C. M.; Tseng, S. H.; Huang, J. E. Increased viewing angle and light extraction efficiency of flip-chip light-emitting diode using double-side patterned sapphire substrate. Scr. Mater. 2015, 108, 40-43.
[41]
Wang, B.; Zhong, S. P.; Ge, Y. Q.; Wang, H. D.; Luo, X. L.; Zhang, H. Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene. Nano Res. 2020, 13, 891-918.
Nano Research
Pages 2606-2612
Cite this article:
Wang C, Fan Y, Shao J, et al. Discretely-supported nanoimprint lithography for patterning the high-spatial-frequency stepped surface. Nano Research, 2021, 14(8): 2606-2612. https://doi.org/10.1007/s12274-020-3261-3
Topics:

827

Views

9

Crossref

14

Web of Science

12

Scopus

2

CSCD

Altmetrics

Received: 02 September 2020
Revised: 04 November 2020
Accepted: 23 November 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return