AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Superconducting properties and topological nodal lines features in centrosymmetric Sn0.5TaSe2

Mukhtar L. Adam1,2,3Zhanfeng Liu1Oyawale A. Moses1Xiaojun Wu2( )Li Song1( )
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230029, China
Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, School of Chemistry and Materials Sciences, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
Physics Department, Bayero University, Kano 700231, Nigeria
Show Author Information

Graphical Abstract

Abstract

Nontrivial topological behaviors in superconducting materials provide resourceful ground for the emergence and study of unconventional quantum states. Charge doping by the controlled intercalation of donor atoms is an efficient route for enhancing/inducement of superconducting and topological behaviors in layered topological insulators and semimetals. Herein, we enhanced the superconducting temperature of TaSe2 by 20-folds (~ 3 k) through Sn atoms intercalation. Using first-principles calculations, we demonstrated the existence of nontrivial topological features. Sn0.5TaSe2 displays topological nodal lines around the K high symmetry point in the Brillouin zone, with drumhead-like shaped surface states protected by inversion symmetry. Altogether, the coexistence of these properties makes Sn0.5TaSe2 a potential candidate for topological superconductivity.

Electronic Supplementary Material

Download File(s)
12274_2020_3262_MOESM1_ESM.pdf (3.1 MB)

References

[1]
Schnyder, A. P.; Ryu, S.; Furusaki, A.; Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 2008, 78, 195125.
[2]
Hasan, M. Z.; Xu, S. Y.; Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals: Discoveries, perspectives and outlooks. Phys. Scr. 2015, 2015, 014001.
[3]
Sato, M.; Ando, Y. Topological superconductors: A review. Rep. Prog. Phys. 2017, 80, 076501.
[4]
Zheng, H.; Li, Y. Y.; Jia, J. F. Topological insulator thin films and artificial topological superconductors. In Advanced Topological Insulators. Luo, H. X., Ed.; Wiley-Scrivener: Hoboken, 2019; pp 71-107.
[5]
Nakamura, Y.; Yanase, Y. Odd-parity superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. B 2017, 96, 054501.
[6]
Eschrig, M.; Iniotakis, C.; Tanaka, Y. Properties of interfaces and surfaces in non-centrosymmetric superconductors. In Non-Centrosymmetric Superconductors. Bauer E.; Sigrist M., Eds.; Springer: Berlin, Heidelberg, 2012.
[7]
Qi, X. L.; Hughes, T. L.; Zhang, S. C. Topological invariants for the Fermi surface of a time-reversal-invariant superconductor. Phys. Rev. B 2010, 81, 134508.
[8]
Sato, M. Topological odd-parity superconductors. Phys. Rev. B 2010, 81, 220504.
[9]
Ono, S.; Yanase, Y.; Watanabe, H. Symmetry indicators for topological superconductors. Phys. Rev. Res. 2019, 1, 013012.
[10]
Skurativska, A.; Neupert, T.; Fischer, M. H. Atomic limit and inversion-symmetry indicators for topological superconductors. Phys. Rev. Res. 2020, 2, 013064.
[11]
Fu, L.; Berg, E. Odd-parity topological superconductors: Theory and application to CuxBi2Se3. Phys. Rev. Lett. 2010, 105, 097001
[12]
Casas, O. E.; Arrachea, L.; Herrera, W. J.; Yeyati, A. L. Proximity induced time-reversal topological superconductivity in Bi2Se3 films without phase tuning. Phys. Rev. B 2019, 99, 161301.
[13]
Trang, C. X.; Shimamura, N.; Nakayama, K.; Souma, S.; Sugawara, K.; Watanabe, I.; Yamauchi, K.; Oguchi, T.; Segawa, K.; Takahashi, T. et al. Conversion of a conventional superconductor into a topological superconductor by topological proximity effect. Nat. Commun. 2020, 11, 159.
[14]
Moriya, R.; Yabuki, N.; Machida, T. Superconducting proximity effect in a NbSe2/graphene van der Waals junction. Phys. Rev. B 2020, 101, 054503.
[15]
Shen, J. Y.; He, W. Y.; Yuan, N. F. Q.; Huang, Z. L.; Cho, C. W.; Lee, S. H.; Hor, Y. S.; Law, K. T.; Lortz, R. Nematic topological superconducting phase in Nb-doped Bi2Se3. Npj Quantum Mater. 2017, 2, 59.
[16]
Kriener, M.; Segawa, K.; Ren, Z.; Sasaki, S.; Ando, Y. Bulk superconducting phase with a full energy gap in the doped topological insulator CuxBi2Se3. Phys. Rev. Lett. 2011, 106, 127004.
[17]
Volosheniuk, S. O.; Selivanov, Y. G.; Bryzgalov, M. A.; Martovitskii, V. P.; Kuntsevich, A. Y. Effect of Sr doping on structure, morphology, and transport properties of Bi2Se3 epitaxial thin films. J. Appl. Phys. 2019, 125, 095103.
[18]
Jat, K. S.; Neha, P.; Bhardwaj, A.; Patnaik, S. Superconductivity by Nb intercalation in the layered topological insulator Bi2Se3. AIP Conf. Proc. 2019, 2115, 030510.
[19]
Maurya, S. V. K.; Srivastava, P.; Patnaik, S. Emergence of superconductivity in topological insulator Bi2Se3 by Sr intercalation. AIP Conf. Proc. 2016, 1731, 130046.
[20]
Liu, Z. H.; Yao, X.; Shao, J. F.; Zuo, M.; Pi, L.; Tan, S.; Zhang, C. J.; Zhang, Y. H. Superconductivity with topological surface state in SrxBi2Se3. J. Am. Chem. Soc. 2015, 137, 10512-10515.
[21]
Hor, Y. S.; Williams, A. J.; Checkelsky, J. G.; Roushan, P.; Seo, J.; Xu, Q.; Zandbergen, H. W.; Yazdani, A.; Ong, N. P.; Cava, R. J. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 2010, 104, 057001.
[22]
Kumaravadivel, P.; Pan, G. A.; Zhou, Y.; Xie, Y. J.; Liu, P. Z.; Cha, J. J. Synthesis and superconductivity of In-doped SnTe nanostructures. APL Mater. 2017, 5, 076110.
[23]
Shen, J.; Xie, Y. J.; Cha, J. J. Revealing surface states in In-doped SnTe nanoplates with low bulk mobility. Nano Lett. 2015, 15, 3827-3832.
[24]
Ali, M. N.; Gibson, Q. D.; Klimczuk, T.; Cava, R. J. Noncentrosymmetric superconductor with a bulk three-dimensional Dirac cone gapped by strong spin-orbit coupling. Phys. Rev. B 2014, 89, 020505.
[25]
Guan, S. Y.; Chen, P. J.; Chu, M. W.; Sankar, R.; Chou, F. C.; Jeng, H. T.; Chang, C. S.; Chuang, T. M. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2. Sci. Adv. 2016, 2, e1600894.
[26]
Long, Y. J.; Zhao, L. X.; Wang, P. P.; Yang, H. X.; Li, J. Q.; Zi, H.; Ren, Z. A.; Ren, C.; Chen, G. F. Single crystal growth and physical property characterization of non-centrosymmetric superconductor PbTaSe2. Chin. Phys. Lett. 2016, 33, 037401.
[27]
Xu, X. T.; Kang, Z. B.; Chang, T. R.; Lin, H.; Bian, G.; Yuan, Z. J.; Qu, Z.; Zhang, J. L.; Jia, S. Quantum oscillations in the noncentrosymmetric superconductor and topological nodal-line semimetal PbTaSe2. Phys. Rev. B 2019, 99, 104516.
[28]
Chang, T. R.; Chen, P. J.; Bian, G.; Huang, S. M.; Zheng, H.; Neupert, T.; Sankar, R.; Xu, S. Y.; Belopolski, I.; Chang, G. Q. et al. Topological Dirac surface states and superconducting pairing correlations in PbTaSe2. Phys. Rev. B 2016, 93, 245130.
[29]
Bian, G.; Chang, T. R.; Sankar, R.; Xu, S. Y.; Zheng, H.; Neupert, T.; Chiu, C. K.; Huang, S. M.; Chang, G. Q.; Belopolski, I. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 2016, 7, 10556.
[30]
Maeda, S.; Matano, K.; Zheng, G. Q. Fully gapped spin-singlet superconductivity in noncentrosymmetric PbTaSe2:207Pb nuclear magnetic resonance study. Phys. Rev. B 2018, 97, 184510.
[31]
Pang, G. M.; Smidman, M.; Zhao, L. X.; Wang, Y. F.; Weng, Z. F.; Che, L. Q.; Chen, Y.; Lu, X.; Chen, G. F.; Yuan, H. Q. Nodeless superconductivity in noncentrosymmetric PbTaSe2 single crystals. Phys. Rev. B 2016, 93, 060506.
[32]
Wilson, M. N.; Hallas, A. M.; Cai, Y.; Guo, S.; Gong, Z.; Sankar, R.; Chou, F. C.; Uemura, Y. J.; Luke, G. M. μsR study of the noncentrosymmetric superconductor PbTaSe2. Phys. Rev. B 2017, 95, 224506.
[33]
Zhang, C. L.; Yuan, Z. J.; Bian, G.; Xu, S. Y.; Zhang, X.; Hasan, M. Z.; Jia, S. Superconducting properties in single crystals of the topological nodal semimetal PbTaSe2. Phys. Rev. B 2016, 93, 054520.
[34]
Bian, G.; Chang, T. R.; Zheng, H.; Velury, S.; Xu, S. Y.; Neupert, T.; Chiu, C. K.; Huang, S. M.; Sanchez, D. S.; Belopolski, I. et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys. Rev. B 2016, 93, 121113.
[35]
Sun, J. P. Topological nodal line semimetal in non-centrosymmetric PbTaS2. Chin. Phys. Lett. 2017, 34, 077101.
[36]
Chen, D. Y.; Wu, Y. L.; Jin, L.; Li, Y. K.; Wang, X. X.; Duan, J. X.; Han, J. F.; Li, X.; Long, Y. Z.; Zhang, X. M. et al. Superconducting properties in a candidate topological nodal line semimetal SnTaS2 with a centrosymmetric crystal structure. Phys. Rev. B 2019, 100, 064516.
[37]
Zhang, J. L.; Zhang, S. J.; Weng, H. M.; Zhang, W.; Yang, L. X.; Liu, Q. Q.; Feng, S. M.; Wang, X. C.; Yu, R. C.; Cao, L. Z. et al. Pressure-induced superconductivity in topological parent compound Bi2Te3. Proc. Natl. Acad. Sci. USA 2011, 108, 24-28.
[38]
Zhu, J.; Zhang, J. L.; Kong, P. P.; Zhang, S. J.; Yu, X. H.; Zhu, J. L.; Liu, Q. Q.; Li, X.; Yu, R. C.; Ahuja, R. et al. Superconductivity in topological insulator Sb2Te3 induced by pressure. Sci. Rep. 2013, 3, 2016.
[39]
Li, Q.; Kharzeev, D. E.; Zhang, C.; Huang, Y.; Pletikosić, I.; Fedorov, A. V.; Zhong, R. D.; Schneeloch, J. A.; Gu, G. D.; Valla, T. Chiral magnetic effect in ZrTe5. Nat. Phys. 2016, 12, 550-554.
[40]
Dissanayake, S.; Duan, C. R.; Yang, J. J.; Liu, J.; Matsuda, M.; Yue, C. M.; Schneeloch, J. A.; Teo, J. C. Y.; Louca, D. Electronic band tuning under pressure in MoTe2 topological semimetal. npj Quantum Mater. 2019, 4, 45.
[41]
Liu, C. X. Unconventional superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. Lett. 2017, 118, 087001.
[42]
Hsu, Y. T.; Vaezi, A.; Fischer, M. H.; Kim, E. A. Topological superconductivity in monolayer transition metal dichalcogenides. Nat. Commun. 2017, 8, 14985.
[43]
Chen, P. J.; Chang, T. R.; Jeng, H. T. Ab initio study of the PbTaSe2-related superconducting topological metals. Phys. Rev. B 2016, 94, 165148.
[44]
Gao, J. J.; Si, J. G.; Luo, X.; Yan, J.; Jiang, Z. Z.; Wang, W.; Xu, C. Q.; Xu, X. F.; Tong, P.; Song, W. H. et al. Superconducting and topological properties in centrosymmetric PbTaS2 single crystals. J. Phys. Chem. C 2020, 124, 6349-6355.
[45]
Gentile, P. S.; Driscoll, D. A.; Hockman, A. J. Preparation and mössbauer effect of tin intercalates of layered transition metal dichalcogenides. Inorganica Chim. Acta 1979, 35, 249-253.
[46]
Eppinga, R.; Wiegers, G. A. A generalized scheme for niobium and tantalum dichalcogenides intercalated with post-transition elements. Phys. B+C 1980, 99, 121-127.
[47]
van der Lee, A.; Wiegers, G. A. Single crystal x-ray study of SnTaS2 at 295 and 425 K. Mater. Res. Bull. 1990, 25, 1011-1018.
[48]
Fang, C. M.; Wiegers, G. A.; Meetsma, A.; de Groot, R. A.; Haas, C. Crystal structure and band structure calculations of Pb13TaS2 and Sn13NbS2. Phys. B 1996, 226, 259-267.
[49]
Bhoi, D.; Khim, S.; Nam, W.; Lee, B. S.; Kim, C.; Jeon, B. G.; Min, B. H.; Park, S.; Kim, K. H. Interplay of charge density wave and multiband superconductivity in 2H-PdxTaSe2. Sci. Rep. 2016, 6, 24068.
[50]
Dijkstra, J.; Broekhuizen, E. A.; van Bruggen, C. F.; Haas, C.; De Groot, R. A.; van der Meulen, H. P. Band structure, photoelectron spectroscopy, and transport properties of SnTaS2. Phys. Rev. B 1989, 40, 12111.
[51]
Eppinga, R.; Wiegers, G. A.; Haas, C. Photoelectron spectra and transport properties of intercalates of Nb and Ta dichalcogenides with Sn and Pb. Phys. B+C 1981, 105, 174-178.
[52]
Eppinga, R.; Sawatzky, G. A.; Haas, C.; van Bruggen, C. F. Photoelectron spectra of 2H-TaS2 and SnxTaS2. J. Phys. C Solid State Phys. 1976, 9, 3371-3380.
[53]
Liu, J. C.; Zhong, M. Z.; Liu, X.; Sun, G. Z.; Chen, P.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X. et al. Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. Nanotechnology 2018, 29, 474002.
[54]
Luo, H.; Xie, W.; Tao, J.; Pletikosic, I.; Valla, T.; Sahasrabudhe, G. S.; Osterhoudt, G.; Sutton, E.; Burch, K. S.; Seibel, E. M. et al. Differences in chemical doping matter: Superconductivity in Ti1-xTaxSe2 but not in Ti1-xNbxSe2. Chem.Mater. 2016, 28, 1927-1935.
[55]
Yan, Z.; Jiang, C.; Pope, T. R.; Tsang, C. F.; Stickney, J. L.; Goli, P.; Renteria, J.; Salguero, T. T.; Balandin, A. A. Phonon and thermal properties of exfoliated TaSe2 thin films. J. Appl. Phys. 2013, 114, 204301.
[56]
Luo, H. X.; Xie, W. W.; Tao, J.; Inoue, H.; Gyenis, A.; Krizan, J. W.; Yazdani, A.; Zhu, Y. M.; Cava, R. J. Polytypism, polymorphism, and superconductivity in TaSe2-xTex. Proc. Natl. Acad. Sci. USA 2015, 112, E1174-E1180.
[57]
Gao, H.; Venderbos, J. W. F.; Kim, Y.; Rappe, A. M. Topological semimetals from first principles. Annu. Rev. Mater. Res. 2019, 49, 153-183.
[58]
Jin, K. H.; Huang, H. Q.; Mei, J. W.; Liu, Z.; Lim, L. K.; Liu, F. Topological superconducting phase in high-Tc superconductor MgB2 with Dirac-nodal-line fermions. Npj Comput. Mater. 2019, 5, 57.
[59]
Gupta, S.; Juneja, R.; Shinde, R.; Singh, A. K. Topologically nontrivial electronic states in CaSn3. J. Appl. Phys. 2017, 121, 214901.
[60]
Dimitri, K.; Hosen, M. M.; Dhakal, G.; Choi, H.; Kabir, F.; Sims, C.; Kaczorowski, D.; Durakiewicz, T.; Zhu, J. X.; Neupane, M. Dirac state in a centrosymmetric superconductor α-PdBi2. Phys. Rev. B 2018, 97, 144514.
[61]
Gresch, D.; Autès, G.; Yazyev, O. V.; Troyer, M.; Vanderbilt, D.; Bernevig, B. A.; Soluyanov, A. A. Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials. Phys. Rev. B 2017, 95, 075146.
[62]
Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt, D. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. 2012, 84, 1419-1475.
[63]
Yu, R.; Qi, X. L.; Bernevig, A.; Fang, Z.; Dai, X. Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection. Phys. Rev. B 2011, 84, 075119.
Nano Research
Pages 2613-2619
Cite this article:
Adam ML, Liu Z, Moses OA, et al. Superconducting properties and topological nodal lines features in centrosymmetric Sn0.5TaSe2. Nano Research, 2021, 14(8): 2613-2619. https://doi.org/10.1007/s12274-020-3262-2
Topics:

824

Views

8

Crossref

N/A

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 30 September 2020
Revised: 23 November 2020
Accepted: 24 November 2020
Published: 23 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return