AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultralight porous poly (vinylidene fluoride)-graphene nanocomposites with compressive sensing properties

Seyed Mohsen Seraji1Xing Jin2Zhifeng Yi1Chunfang Feng1Nisa V. Salim1,2( )
Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
Mechanical Engineering and Product Design Engineering, Manufacturing Futures Research Institute, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
Show Author Information

Graphical Abstract

Abstract

Compressible sensors with highly porous features are ideal candidates for sports and wearable electronics. This study demonstrated for the first time, how the crystalline transformation of poly (vinylidene fluoride) (PVDF) influences aerogel formation and also the compressible sensing properties of a graphene composite. In the present study, two feasible synthesis methods are demonstrated for the fabrication of both PVDF/graphene foams and aerogels with high sensitivity. A three-dimensional network of the PVDF/graphene foams and aerogels is prepared by gelation induced crystallization of PVDF/cyclohexanone by adjusting temperature and time. Herein, PVDF/graphene foams and aerogels with density range of 0.11 - 0.17 g·cm-3 were fabricated. The compressive behaviour of PVDF/graphene aerogels was compared with PVDF/graphene foam samples. Incorporation of 20 wt.% graphene in PVDF aerogel improved the compressive strength significantly by 12 times. The electromechanical performance of foams and aerogels shows that the PVDF/20G (G represents graphene) foam sample has high sensitivity of 396.7 kPa-1 to the pressure higher than 400 kPa, while PVDF/40G aerogels have a sensitivity value of 3.0 × 10-3 kPa-1 in pressure range lower than 500 kPa. The results provide new pathways to fabricate porous composite with lighter density with high mechanical and electrical properties.

Electronic Supplementary Material

Download File(s)
12274_2020_3263_MOESM1_ESM.pdf (963.9 KB)

References

[1]
Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.
[2]
Anju, M.; Renuka, N. K. Graphene-dye hybrid optical sensors. Nano-Struct. Nano-Objects 2019, 17, 194-217.
[3]
Li, N.; Zhang, Q.; Gao, S.; Song, Q.; Huang, R.; Wang, L.; Liu, L. W.; Dai, J. W.; Tang, M. L.; Cheng, G, S. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. 2013, 3, 1604.
[4]
Mo, R. W.; Rooney, D.; Sun, K. N.; Yang, H. Y. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun. 2017, 8, 13949.
[5]
Yavari, F.; Chen, Z. P.; Thomas, A. V.; Ren, W. C.; Cheng, H. M.; Koratkar, N. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 2011, 1, 166.
[6]
Yang, Y. Q.; Asiri, A. M.; Tang, Z. W.; Du, D.; Lin, Y. H. Graphene based materials for biomedical applications. Mater. Today 2013, 16, 365-373.
[7]
Samad, Y. A.; Li, Y. Q.; Alhassan, S. M.; Liao, K. Novel graphene foam composite with adjustable sensitivity for sensor applications. ACS Appl. Mater.Interfaces 2015, 7, 9195-9202.
[8]
Wu, C.; Huang, X. Y.; Wu, X. F.; Qian, R.; Jiang, P. K. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv. Mater. 2013, 25, 5658-5662.
[9]
Qin, Y. Y.; Peng, Q. Y.; Ding, Y. J.; Lin, Z. S.; Wang, C. H.; Li, Y.; Xu, F.; Li, J. J.; Yuan, Y.; He, X. D. et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 2015, 9, 8933-8941.
[10]
Wu, Y. P.; Yi, N. B.; Huang, L.; Zhang, T. F.; Fang, S. L.; Chang, H. C.; Li, N.; Oh, J.; Lee, J. A.; Kozlov, M. et al. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio. Nat. Commun. 2015, 6, 6141.
[11]
Eswaraiah, V.; Sankaranarayanan, V.; Ramaprabhu, S. Functionalized graphene-PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 2011, 296, 894-898.
[12]
Rezvantalab, H.; Ghazi, N.; Ambrusch, M. J.; Infante, J.; Shojaei-Zadeh, S. An aqueous-based approach for fabrication of PVDF/MWCNT porous composites. Sci. Rep. 2017, 7, 1716.
[13]
Wang, J. K.; Xiong, G. M.; Zhu, M. M.; Özyilmaz, B.; Neto, A. H. C.; Tan, N. S.; Choong, C. Polymer-enriched 3D graphene foams for biomedical applications. ACS Appl. Mater. Interfaces 2015, 7, 8275-8283.
[14]
Fuller, C. R.; Guigou, C.; Gentry, C. A. Foam-PVDF smart skin for active control of sound. In Proceedings of SPIE 2721, Smart Structures and Materials 1996: Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, USA, 1996.
[15]
Bezazi, A.; Frioui, N.; Scarpa, F. Tensile static, fatigue and relaxation behaviour of closed cell electret PVDF foams. Mech. Mater. 2011, 43, 459-466.
[16]
Chen, X. L.; Liang, Y. N.; Tang, X. Z.; Shen, W. M.; Hu, X. Additive-free poly (vinylidene fluoride) aerogel for oil/water separation and rapid oil absorption. Chem. Eng. J. 2017, 308, 18-26.
[17]
Li, R.; Chen, C. B.; Li, J.; Xu, L. M.; Xiao, G. Y.; Yan, D. Y. A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels. J. Mater. Chem. A 2014, 2, 3057-3064.
[18]
Lai, Y. M.; Wan, L.; Wang, B. G. PVDF/Graphene composite nanoporous membranes for vanadium flow batteries. Membranes 2019, 9, 89.
[19]
Jin, X.; Feng, C. F.; Ponnamma, D.; Yi, Z. F.; Parameswaranpillai, J.; Thomas, S.; Salim, N. V. Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics. Chem. Eng. J. Adv. 2020, 4, 100034.
[20]
Al-Saygh, A.; Ponnamma, D.; AlMaadeed, M. A.; Vijayan, P. P.; Karim, A.; Hassan, M. K. Flexible pressure sensor based on PVDF nanocomposites containing reduced graphene oxide-titania hybrid nanolayers. Polymers 2017, 9, 33.
[21]
Vicente, J.; Costa, P.; Lanceros-Mendez, S.; Abete, J. M.; Iturrospe, A. Electromechanical properties of PVDF-Based polymers reinforced with nanocarbonaceous fillers for pressure sensing applications. Materials 2019, 12, 3545.
[22]
Zha, D. A.; Mei, S. L.; Wang, Z. Y.; Li, H. J.; Shi, Z. J.; Jin, Z. X. Superhydrophobic polyvinylidene fluoride/graphene porous materials. Carbon 2011, 49, 5166-5172.
[23]
Huang, T.; Yang, S. W.; He, P.; Sun, J.; Zhang, S.; Li, D. D.; Meng, Y.; Zhou, J. S.; Tang, H. X.; Liang, J. R. et al. Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors. ACS Appl. Mater. Interfaces 2018, 10, 30732-30740.
[24]
Gregorio,R. Jr.; Ueno, E. M. Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF). J. Mater. Sci. 1999, 34, 4489-4500.
[25]
Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683-706.
[26]
Seraji, S. M.; Guo, Q. P. Polymorphism and crystallization in poly (vinylidene fluoride)/poly (ϵ-caprolactone)-block-poly (dimethylsiloxane)-block-poly (ϵ-caprolactone) blends. Polym. Int. 2020, 69, 173-183.
[27]
Seraji, S. M.; Guo, Q. P. Nanophase morphology and crystallization in poly (vinylidene fluoride)/polydimethylsiloxane-block-poly (methyl methacrylate)-block-polystyrene blends. Polym. Int. 2019, 68, 1064-1073.
[28]
Cui, Z. L.; Hassankiadeh, N. T.; Zhuang, Y. B.; Drioli, E.; Lee, Y. M. Crystalline polymorphism in poly (vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94-126.
[29]
Seraji, S. M.; Gui, H. G.; Zhang, J.; Guo, Q. P. Nanophase morphology and crystallization in poly(vinylidene fluoride)/polydimethylsiloxane-block-poly(methyl methacrylate) blends. Polym. Int. 2019, 68, 418-427.
[30]
Sharma, M.; Madras, G.; Bose, S. Contrasting effects of graphene oxide and poly (ethylenimine) on the polymorphism in poly (vinylidene fluoride). Cryst. Growth Des. 2015, 15, 3345-3355.
[31]
Yu, J. H.; Jiang, P. K.; Wu, C.; Wang, L. C.; Wu, X. F. Graphene nanocomposites based on poly (vinylidene fluoride): Structure and properties. Polym. Compos. 2011, 32, 1483-1491.
[32]
Liu, T.; Huang, M. L. ; Li, X. F.; Wang, C. J.; Gui, C. X.; Yu, Z. Z. Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon 2016, 100: 456-464.
[33]
Xie, X.; Zhou, Y. L.; Bi, H. C.; Yin, K. B.; Wan, S.; Sun, L. T. Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci. Rep. 2013, 3, 2117.
[34]
Hu, J.; Marciniak, Z.; Duncan, J. Mechanics of Sheet Metal Forming; Elsevier: Amsterdam, 2002.
[35]
Dong, W. Y.; Wang, H. T.; Ren, F. L.; Zhang, J. Q.; He, M. F.; Wu, T.; Li, Y. J. Dramatic improvement in toughness of PLLA/PVDF blends: The effect of compatibilizer architectures. ACS Sustainable Chem. Eng. 2016, 4, 4480-4489.
[36]
Tao, M. M.; Liu, F.; Ma, B. R.; Xue, L. X. Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination 2013, 316, 137-145.
[37]
Govinna, N.; Sadeghi, I.; Asatekin, A.; Cebe, P. Thermal properties and structure of electrospun blends of PVDF with a fluorinated copolymer. J. Polym. Sci. Part B Polym. Phys. 2019, 57, 312-322.
[38]
Kalaitzidou, K.; Fukushima, H.; Askeland, P.; Drzal, L. T. The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J. Mater. Sci. 2008, 43, 2895-2907.
[39]
Layek, R. K.; Samanta, S.; Chatterjee, D. P.; Nandi, A. K. Physical and mechanical properties of poly (methyl methacrylate)-functionalized graphene/poly (vinylidine fluoride) nanocomposites: Piezoelectric β polymorph formation. Polymer 2010, 51, 5846-5856.
[40]
Yu, T.; Wu, C. M.; Chang, C. Y.; Wang, C. Y.; Rwe, S. P. Effects of crystalline morphologies on the mechanical properties of carbon fiber reinforcing polymerized cyclic butylene terephthalate composites. Express Polym. Lett. 2012, 6, 318-328.
[41]
Salimi, A.; Yousefi, A. A. Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003, 22, 699-704.
[42]
Wang, A. D.; Chen, C. F.; Liao, L. C.; Qian, J. L.; Yuan, F. G.; Zhang, N. Y. Enhanced β-phase in direct ink writing PVDF thin films by intercalation of Graphene. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1497-1502.
[43]
Guo, F.; Creighton, M.; Chen, Y. T.; Hurt, R.; Külaots, I. Porous structures in stacked, crumpled and pillared graphene-based 3D materials. Carbon 2014, 66, 476-484.
[44]
Ponnamma, D.; Goutham, S.; Sadasivuni, K. K.; Rao, K. V.; Cabibihan, J. J.; Al-Maadeed, M. A. A. Controlling the sensing performance of rGO filled PVDF nanocomposite with the addition of secondary nanofillers. Synth. Met. 2018, 243: 34-43.
[45]
McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396-4404.
[46]
Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535-8539.
[47]
Feng, C. F.; Yi, Z. F.; Jin, X.; Seraji, S. M.; Dong, Y. J.; Kong, L. X.; Salim, N. Solvent crystallization-induced porous polyurethane/graphene composite foams for pressure sensing. Compos. Part B Eng. 2020, 194, 108065.
Nano Research
Pages 2620-2629
Cite this article:
Seraji SM, Jin X, Yi Z, et al. Ultralight porous poly (vinylidene fluoride)-graphene nanocomposites with compressive sensing properties. Nano Research, 2021, 14(8): 2620-2629. https://doi.org/10.1007/s12274-020-3263-1
Topics:

846

Views

13

Crossref

11

Web of Science

9

Scopus

2

CSCD

Altmetrics

Received: 22 July 2020
Revised: 30 October 2020
Accepted: 24 November 2020
Published: 09 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return