AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gram-scale fabrication of patchy nanoparticles with tunable spatial topology and chemical functionality

Jiecheng Cui1,2,§( )Yi Li1,§Huili Yuan1Ning Gao2Kai Feng2Wenyun Li2Kang Zhou2Xianpeng Yin2Guangtao Li2( )
College of Chemistry and Life Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Jiecheng Cui and Yi Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Patchy particles, defined as particles with one or more well-defined patches, have attracted much attention due to their anisotropic and directional interactions. The anisotropic nature of the patchy particle surface enables a certain degree of control over the assembly process. Enormous efforts have been carried out to design and explore the properties of patchy particles and their collective behaviour. However, the techniques to fabricate patchy particles are still limited in terms of tunability and scalability. In this work, an effective method of fabricating patchy particles with tunable spatial topology and chemical composition of patches is presented. The number, distribution and size of the patches can be tailored by adjusting the packing of the colloidal particles and the processing condition. The active secondary reaction on the polydopamine (PDA)-coated surface and silica surface could functionalize the obtained patchy particles with desired properties to meet different requirements. As a proof of principle, the PDA-coated patches were modified with thiol-based dye via the Michael reaction and the silica surfaces were functionalized with amine-terminated alkoxysilanes via the silane coupling reaction have been demonstrated. Furthermore, the unique properties of PDA, such as reductive ability, powerful adhesive capability and carbonizable feature, have also been proven to fabricate metallic nanoparticle-decorated patchy particles and anisotropic carbon nanocapsules. The well-defined patchy particles are templated from colloidal crystal and their gram-scale fabrication is easily achieved. These results indicate that our strategy will help access the transformative potential of patchy particles in the rational design and large-scale production of functional materials.

References

[1]
Glotzer, S. C. Some assembly required. Science 2004, 306, 419-420.
[2]
Duguet, E.; Désert, A.; Perro, A.; Ravaine, S. Design and elaboration of colloidal molecules: An overview. Chem. Soc. Rev. 2011, 40, 941-960.
[3]
Sosa, C.; Liu, R.; Tang, C.; Qu, F. L.; Niu, S.; Bazant, M. Z.; Prud’homme, R. K.; Priestley, R. D. Soft multifaced and patchy colloids by constrained volume self-assembly. Macromolecules 2016, 49, 3580-3585.
[4]
Li, W. Y.; Palis, H.; Mérindol, R.; Majimel, J.; Ravaine, S.; Duguet, E. Colloidal molecules and patchy particles: Complementary concepts, synthesis and self-assembly. Chem. Soc. Rev. 2020, 49, 1955-1976.
[5]
Wang, Z. C.; Wang, Z. S.; Li, J. H.; Cheung, S. T, H.; Tian, C. H.; Kim, S. H.; Yi, G. R.; Ducrot, E.; Wang, Y. E. Active patchy colloids with shape-tunable dynamics. J. Am. Chem. Soc. 2019, 141, 14853-14863.
[6]
Zheng, X. L.; Liu, M. Z.; He, M. X.; Pine, D. J.; Weck, M. Shape-shifting patchy particles. Angew. Chem., Int. Ed. 2017, 56, 5507-5511.
[7]
Chen, C. H.; Xie, L.; Wang, Y. Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles. Nano. Res. 2019, 12, 1267-1278.
[8]
Wong, C. K.; Chen, F.; Walther, A.; Stenzel, M. H. BioactivePatchy Nanoparticles with Compartmentalized Cargoes for Simultaneous and Trackable Delivery. Angew. Chem., Int. Ed. 2019, 58, 7335-7340.
[9]
Fu, J. Y.; Gu, Z. Y.; Liu, Y.; Zhang, J.; Song, H.; Yang, Y. N.; Yang, Y.; Noonan, O.; Tang, J.; Yu, C. Z. Bottom-up self-assembly of heterotrimeric nanoparticles and their secondary Janus generations. Chem. Sci. 2019, 10, 10388-10394.
[10]
Pothorszky, S.; Zámbó, D.; Szekrényes, D.; Hajnal, Z.; Deák, A. Detecting patchy nanoparticle assembly at the single-particle level. Nanoscal. 2017, 9, 10344-10349.
[11]
Yan, J.; Bae, S. C.; Granick, S. Colloidal superstructures programmed into magnetic janus particles. Adv. Mater. 2015, 27, 874-879.
[12]
Ling, X. Y.; Phang, I.; Acikgoz, C.; Yilmaz, M. D.; Hempenius, M. A.; Vancso, G. J.; Huskens, J. Janus particles with controllable patchiness and their chemical functionalization and supramolecular assembly. Angew. Chem., Int. Ed. 2009, 48, 7677-7682.
[13]
Wang, K.; Li, F.; Tian, D.; Xu, J. P.; Liu, Y. Y.; Hou, Z. Y.; Zhou, H. M.; Chen, S. B.; Zhu, J. T.; Yang, Z. Z. Segmental Janus nanoparticles of polymer composites. Chem. Commun. 2019, 55, 8114-8117.
[14]
Kamp, M.; de Nijs, B.; van der Linden, M. N.; de Feijter, I.; Lefferts, M. J.; Aloi, A.; Griffiths, J.; Baumberg, J. J.; Voets, I. K.; van Blaaderen, A. Multivalent patchy colloids for quantitative 3D self-assembly studies. Langmuir 2020, 36, 2403-2418.
[15]
Espinosa, A.; Reguera, J.; Curcio, A.; Muñoz-Noval, Á.; Kuttner, C.; van Walle, A.; Liz-Marzán, L. M.; Wilhelm, C. Janus magnetic-plasmonic nanoparticles for magnetically guided and thermally activated cancer therapy. Small 2020, 16, 1904960.
[16]
Li, J. W.; Wang, J. F.; Yao, Q.; Yu, K.; Yan, Y. G.; Zhang, J. Cooperative assembly of Janus particles and amphiphilic oligomers: The role of Janus balance. Nanoscale 2019, 11, 7221-7228.
[17]
Mao, Z. W.; Xu, H. L.; Wang, D. Y. Molecular mimetic self-assembly of colloidal particles. Adv. Funct. Mater. 2010, 20, 1053-1074.
[18]
Bao, H. X.; Peukert, W.; Taylor, R. N. One-pot colloidal synthesis of plasmonic patchy particles. Adv. Mater. 2011, 23, 2644-2649.
[19]
Yin, S. N.; Wang, C. F.; Yu, Z. Y.; Wang, J.; Liu, S. S.; Chen, S. Versatile bifunctional magnetic-fluorescent responsive Janus supraballs towards the flexible bead display. Adv. Mater. 2011, 23, 2915-2119.
[20]
Koo, H. Y.; Yi, D. K.; Yoo, S. J.; Kim, D. Y. A snowman-like array of colloidal dimers for antireflecting surfaces. Adv. Mater. 2004, 16, 274-277.
[21]
Lu, Y.; Xiong, H.; Jiang, X. C.; Xia, Y. N.; Prentiss, M.; Whitesides, G. M. Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J. Am. Chem. Soc. 2003, 125, 12724-12725.
[22]
Takei, H.; Shimizu, N. Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres. Langmuir 1997, 13, 1865-1868.
[23]
Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754-1757.
[24]
Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47-52. c) Langer, R. Drugs on target. Science 2001, 293, 58-59.
[25]
Yin, Y.; Xia, Y. Growth of large colloidal crystals with their (100) planes orientated parallel to the surfaces of supporting substrates. Adv. Mater. 2002, 14, 605-608.
[26]
Su, B.; Zhang, C.; Chen, S. R.; Zhang, X. Y.; Chen, L. F.; Wu, Y. C.; Nie, Y. W.; Kan, X. N.; Song, Y. L.; Jiang, L. A general strategy for assembling nanoparticles in one dimension. Adv. Mater. 2014, 26, 2501-2507.
[27]
Jiang, P.; McFarland. M. J. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc. 2004, 126, 13778-13786.
[28]
Huang, Y.; Zhou, J. M.; Su, B.; Shi, L.; Wang, J. X.; Chen, S. R.; Wang, L. B.; Zi, J.; Song, Y. L.; Jiang, L. Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. J. Am. Chem. Soc. 2012, 134, 17053-17058.
[29]
Cui, J. C.; Zhu, W.; Gao, N.; Li, J.; Yang, H. W.; Jiang, Y.; Seidel, P.; Ravoo, B. J.; Li, G. T. Inverse opal spheres based on polyionic liquids as functional microspheres with tunable optical properties and molecular recognition capabilities. Angew. Chem., Int. Ed. 2014, 53, 3844-3848.
[30]
Zhao, Y. J.; Zhao, X. W.; Sun, C.; Li, J.; Zhu, R.; Gu, Z. Z. Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal. Chem. 2008, 80, 1598-1605.
[31]
Kamalasanan, K.; Jhunjhunwala, S.; Wu, J. M.; Swanson, A.; Gao, D.; Little, S. R. Patchy, anisotropic microspheres with soft protein islets. Angew. Chem., Int. Ed. 2011, 50, 8706-8708.
[32]
Ling, X. Y.; Phang, I. Y.; Acikgoz, C.; Yilmaz, M. D.; Hempenius, M. A.; Vancso, G. J.; Huskens, J. Janus particles with controllable patchiness and their chemical functionalization and supramolecular assembly. Angew. Chem., Int. Ed. 2009, 48, 7677-7682.
[33]
Kaufmann, T.; Gokmen, M. T.; Wendeln, C.; Schneiders, M.; Rinnen, S.; Arlinghaus, H. F.; Bon, S. A. F.; Prez, F. E. D.; Ravoo, B. J. “Sandwich” microcontact printing as a mild route towards monodisperse Janus particles with tailored bifunctionality. Adv. Mater. 2011, 23, 79-83.
[34]
Jiang, P.; McFarland. M. J. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J. Am. Chem. Soc. 2004, 126, 13778-13786.
[35]
Wang, L. K.; Xia, L. H.; Li, G.; Ravaine, S.; Zhao, X. S. Patterning the surface of colloidal microspheres and fabrication of nonspherical particles. Angew. Chem., Int. Ed. 2008, 47, 4725-4728.
[36]
Hoogenboom, J. P.; Rétif, C.; de Bres, E.; van de Boer, M.; van Langen-Suurling, A. K.; Romijn, J.; van Blaaderen, A. Template-induced growth of close-packed and non-close-packed colloidal crystals during solvent evaporation. Nano Lett. 2004, 4, 205-208.
[37]
Dziomkina, N. V.; Hempenius, M. A.; Vancso, G. J. Symmetry control of polymer colloidal monolayers and crystals by electrophoretic deposition on patterned surfaces. Adv. Mater. 2005, 17, 237-240.
[38]
Langille, M. R.; Personick, M. L.; Mirkin, C. A. Plasmon-mediated syntheses of metallic nanostructures. Angew. Chem., Int. Ed. 2013, 52, 13910-13940.
[39]
Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426-430.
[40]
Wang, C.; Zhu, W.; Lan, Y.; Zhang, M.; Tian, T.; Wang, H.; Li, G. T. Facile fabrication of reactive plasmonic substrates for fluorescence enhancement via mussel-inspired chemistry. J. Phys. Chem. C 2014, 118, 10754-10763.
[41]
Jiang, Y.; Lan, Y.; Yin, X. P.; Yang, H. W.; Cui, J. C.; Zhu, T.; Li, G. T. Polydopamine-based photonic crystal structures. J. Mater. Chem. C 2013, 1, 6136-6144.
[42]
Jang, J.; Bae, J. Fabrication of polymer nanofibers and carbon nanofibers by using a salt-assisted microemulsion polymerization. Angew. Chem., Int. Ed. 2004, 43, 3803-3806.
Nano Research
Pages 2666-2672
Cite this article:
Cui J, Li Y, Yuan H, et al. Gram-scale fabrication of patchy nanoparticles with tunable spatial topology and chemical functionality. Nano Research, 2021, 14(8): 2666-2672. https://doi.org/10.1007/s12274-020-3270-2
Topics:

693

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 24 July 2020
Revised: 25 November 2020
Accepted: 26 November 2020
Published: 30 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return