AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs

Shuai ShiXianglong WenQinqin SangShuai YinKaili WangJian ZhangMin HuHuiming YinJia He( )Yi Ding( )
Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
Show Author Information

Graphical Abstract

Abstract

Design of catalyst layers (CLs) with high proton conductivity in membrane electrode assemblies (MEAs) is an important issue for proton exchange membrane fuel cells (PEMFCs). Herein, an ultrathin catalyst layer was constructed based on Pt-decorated nanoporous gold (NPG-Pt) with sub-Debye-length thickness for proton transfer. In the absence of ionomer incorporation in the CLs, these integrated carbon-free electrodes can deliver maximum mass-specific power density of 198.21 and 25.91 kW·gPt-1 when serving individually as the anode and cathode, at a Pt loading of 5.6 and 22.0 μg·cm-2, respectively, comparable to the best reported nano-catalysts for PEMFCs. In-depth quantitative experimental measurements and finite-element analyses indicate that improved proton conduction plays a critical role in activation, ohmic and mass transfer polarizations.

Electronic Supplementary Material

Video
12274_2020_3272_MOESM2_ESM.mp4
Download File(s)
12274_2020_3272_MOESM1_ESM.pdf (3 MB)

References

[1]
Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res. 2019, 12, 2055-2066.
[2]
Hu, Y. Z.; Lu, Y.; Zhao, X. R.; Shen, T.; Zhao, T. H.; Gong, M. X.; Chen, K.; Lai, C. L.; Zhang, J.; Xin, H. L. et al. Highly active N-doped carbon encapsulated Pd-Fe intermetallic nanoparticles for the oxygen reduction reaction. Nano Res. 2020, 13, 2365-2370.
[3]
Fang, D. H.; Wan, L.; Jiang, Q. K.; Zhang, H. J.; Tang, X. J.; Qin, X. P.; Shao, Z. G.; Wei, Z. D. Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction. Nano Res. 2019, 12, 2766-2773.
[4]
Wu, H. W. A review of recent development: Transport and performance modeling of PEM fuel cells. Appl. Energy 2016, 165, 81-106.
[5]
Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Yu, X.; Wang, C.; Ma, T. L. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2019, 12, 2774-2780.
[6]
Zhao, S. Y.; Wang, K.; Zou, X. L.; Gan, L.; Du, H. D.; Xu, C. J.; Kang, F. Y.; Duan, W. H.; Li, J. Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Res. 2019, 12, 925-930.
[7]
Mehta, V.; Cooper, J. S. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 2003, 114, 32-53.
[8]
Tian, N.; Lu, B. A.; Yang, X. D.; Huang, R.; Jiang, Y. X.; Zhou, Z. Y.; Sun, S. G. Rational design and synthesis of low-temperature fuel cell electrocatalysts. Electrochem. Energy Rev. 2018, 1, 54-83.
[9]
Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578-589.
[10]
Shen, S. Y.; Han, A. D.; Yan, X. H.; Chen, J. R.; Cheng, X. J.; Zhang, J. L. Influence of equivalent weight of ionomer on proton conduction behavior in fuel cell catalyst layers. J. Electrochem. Soc. 2019, 166, F724-F728.
[11]
Lee, J.; Yoo, J. M.; Ye, Y.; Mun, Y.; Lee, S.; Kim, O. H.; Rhee, H. W.; Lee, H. I.; Sung, Y. E.; Lee, J. Development of highly stable and mass transfer-enhanced cathode catalysts: Support-free electrospun intermetallic FePt nanotubes for polymer electrolyte membrane fuel cells. Adv. Energy Mater. 2015, 5, 1402093.
[12]
Mauger, S. A.; Neyerlin, K. C.; Alia, S. M.; Ngo, C.; Babu, S. K.; Hurst, K. E.; Pylypenko, S.; Litster, S.; Pivovar, B. S. Fuel cell performance implications of membrane electrode assembly fabrication with platinum-nickel nanowire catalysts. J. Electrochem. Soc. 2018, 165, F238-F245.
[13]
Gao, L.; Li, X. X.; Yao, Z. Y.; Bai, H. J.; Lu, Y. F.; Ma, C.; Lu, S. F.; Peng, Z. M.; Yang, J. L.; Pan, A. L. et al. Unconventional p-d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083-18090.
[14]
Zeng, Y. C.; Shao, Z. G.; Zhang, H. J.; Wang, Z. Q.; Hong, S. J.; Yu, H. M.; Yi, B. L. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells. Nano Energy 2017, 34, 344-355.
[15]
Kim, O. H.; Cho, Y. H.; Kang, S. H.; Park, H. Y.; Kim, M.; Lim, J. W.; Chung, D. Y.; Lee, M. J.; Choe, H.; Sung, Y. E. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure. Nat. Commun. 2013, 4, 2473.
[16]
Tian, Z. Q.; Lim, S. H.; Poh, C. K.; Tang, Z.; Xia, Z. T.; Luo, Z. Q.; Shen, P. K.; Chua, D.; Feng, Y. P.; Shen, Z. X. et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells. Adv. Energy Mater. 2011, 1, 1205-1214.
[17]
Debe, M. K.; Schmoeckel, A. K.; Vernstrom, G. D.; Atanasoski, R. High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources 2006, 161, 1002-1011.
[18]
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43-51.
[19]
Debe, M. K. Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts. J. Electrochem. Soc. 2013, 160, F522-F534.
[20]
Rösner, H.; Parida, S.; Kramer, D.; Volkert, C. A.; Weissmüller, J. Reconstructing a nanoporous metal in three dimensions: An electron tomography study of dealloyed gold leaf. Adv. Eng. Mater. 2007, 9, 535-541.
[21]
Ding, Y.; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc. 2003, 125, 7772-7773.
[22]
Ding, Y.; Chen, M. W.; Erlebacher, J. Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc. 2004, 126, 6876-6877.
[23]
Wang, R. Y.; Wang, C.; Cai, W. B.; Ding, Y. Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nanoengineered surface structures. Adv. Mater. 2010, 22, 1845-1848.
[24]
Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Meng, Y. F.; Ge, X. B.; Chen, M. W.; Ding, Y. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 2014, 7, 1569-1580.
[25]
Santamaría-Holek, I.; Hernández, S. I.; García-Alcantára, C.; Ledesma-Durán, A. Review on the macro-transport processes theory for irregular pores able to perform catalytic reactions. Catalysts 2019, 9, 281.
[26]
Wang, Y. F.; Narayanan, S. R.; Wu, W. Field-assisted splitting of pure water based on deep-sub-debye-length nanogap electrochemical cells. ACS Nano 2017, 11, 8421-8428.
[27]
Yang, G. Q.; Yu, S. L.; Kang, Z. Y.; Li, Y. F.; Bender, G.; Pivovar, B. S.; Green, J. B.; Cullen, D. A.; Zhang, F. Y. Building electron/proton nanohighways for full utilization of water splitting catalysts. Adv. Energy Mater. 2020, 10, 1903871.
[28]
Jiang, S. F.; Yi, B. L.; Cao, L. S.; Song, W.; Zhao, Q.; Yu, H. M.; Shao, Z. G. Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thin-film fuel cell electrodes. J. Power Sources 2016, 329, 347-354.
[29]
Koenigsmann, C.; Sutter, E.; Chiesa, T. A.; Adzic, R. R.; Wong, S. S. Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions. Nano Lett. 2012, 12, 2013-2020.
[30]
Tian, M. M.; Shi, S.; Shen, Y. L.; Yin, H. M. PtRu alloy nanoparticles supported on nanoporous gold as an efficient anode catalyst for direct methanol fuel cell. Electrochim. Acta 2019, 293, 390-398.
[31]
Lopez-Haro, M.; Guétaz, L.; Printemps, T.; Morin, A.; Escribano, S.; Jouneau, P. H.; Bayle-Guillemaud, P.; Chandezon, F.; Gebel, G. Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat. Commun. 2014, 5, 5229.
[32]
Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9-35.
[33]
Zhao, Y.; Zhang, W. Q.; Yin, H. M.; He, J.; Ding, Y. Surface alloying of Pt monolayer on nanoporous gold for enhanced oxygen reduction. Electrochim. Acta 2018, 274, 9-15.
[34]
Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111.
[35]
Hou, J. B.; Yang, M.; Ke, C. C.; Wei, G. H.; Zhang, J. L. Optimizing the structural design of a nanocomposite catalyst layer for PEM fuel cells for improving mass-specific power density. Nanoscale 2020, 12, 13858-13878.
[36]
Ostroverkh, A.; Johánek, V.; Dubau, M.; Kúš, P.; Khalakhan, I.; Šmíd, B.; Fiala, R.; Václavů, M.; Ostroverkh, Y.; Matolín, V. Optimization of ionomer-free ultra-low loading Pt catalyst for anode/cathode of PEMFC via magnetron sputtering. Int. J. Hydrogen Energy 2019, 44, 19344-19356.
[37]
Shu, T.; Liao, S. J.; Hsieh, C. T.; Roy, A. K.; Liu, Y. Y.; Tzou, D. Y.; Chen, W. Y. Fabrication of platinum electrocatalysts on carbon nanotubes using atomic layer deposition for proton exchange membrane fuel cells. Electrochim. Acta 2012, 75, 101-107.
[38]
Kim, J. M.; Kim, J. H.; Kim, J.; Lim, Y.; Kim, Y.; Alam, A.; Lee, J.; Ju, H.; Ham, H. C.; Kim, J. Y. Synergetic structural transformation of Pt electrocatalyst into advanced 3D architectures for hydrogen fuel cells. Adv. Mater., in press, .
[39]
Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs. alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529-B1536.
[40]
Tran, Q. C.; An, H.; Ha, H.; Nguyen, V. T.; Quang, N. D.; Kim, H. Y.; Choi, H. S. Robust graphene-wrapped PtNi nanosponge for enhanced oxygen reduction reaction performance. J. Mater. Chem. A 2018, 6, 8259-8264.
[41]
Liu, P.; Guan, P. F.; Hirata, A.; Zhang, L.; Chen, L. Y.; Wen, Y. R.; Ding, Y.; Fujita, T.; Erlebacher, J.; Chen, M. W. Visualizing under-coordinated surface atoms on 3D nanoporous gold catalysts. Adv. Mater. 2016, 28, 1753-1759.
[42]
Xiao, B. B.; Lang, X. Y.; Jiang, Q. Pt monatomic wire supported on graphene nanoribbon for oxygen reduction reaction. RSC Adv. 2014, 4, 28400-28408.
[43]
Jung, S. M.; Yun, S. W.; Kim, J. H.; You, S. H.; Park, J.; Lee, S.; Chang, S. H.; Chae, S. C.; Joo, S. H.; Jung, Y. et al. Selective electrocatalysis imparted by metal-insulator transition for durability enhancement of automotive fuel cells. Nat. Catal. 2020, 3, 639-648.
[44]
Cognard, G.; Ozouf, G.; Beauger, C.; Berthomé, G.; Riassetto, D.; Dubau, L.; Chattot, R.; Chatenet, M.; Maillard, F. Benefits and limitations of Pt nanoparticles supported on highly porous antimony-doped tin dioxide aerogel as alternative cathode material for proton-exchange membrane fuel cells. Appl. Catal. B: Environ. 2017, 201, 381-390.
[45]
Liu, Y. X.; Murphy, M.; Baker, D.; Gu, W. B.; Ji, C. X.; Jorne, J.; Gasteiger, H. A. Determination of electrode sheet resistance in cathode catalyst layer by AC impedance. ECS Trans. 2007, 11, 473-484.
[46]
Zhao, X. S.; Li, W.; Fu, Y. Z.; Manthiram, A. Influence of ionomer content on the proton conduction and oxygen transport in the carbon-supported catalyst layers in DMFC. Int. J. Hydrogen Energy 2012, 37, 9845-9852.
[47]
Thompson, E. L.; Baker, D. R. Proton conduction on ionomer-free Pt surfaces. ECS Trans. 2011, 41, 709-720.
[48]
Xia, L. C.; Zhang, C. Z.; Hu, M. H.; Jiang, S. F.; Chin, C. S.; Gao, Z. C.; Liao, Q. Investigation of parameter effects on the performance of high-temperature PEM fuel cell. Int. J. Hydrogen Energy 2018, 43, 23441-23449.
[49]
Conde, J. J.; Folgado, M. A.; Ferreira-Aparicio, P.; Chaparro, A. M.; Chowdhury, A.; Kusoglu, A.; Cullen, D.; Weber, A. Z. Mass-transport properties of electrosprayed Pt/C catalyst layers for polymer-electrolyte fuel cells. J. Power Sources 2019, 427, 250-259.
Nano Research
Pages 2681-2688
Cite this article:
Shi S, Wen X, Sang Q, et al. Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs. Nano Research, 2021, 14(8): 2681-2688. https://doi.org/10.1007/s12274-020-3272-0
Topics:

951

Views

18

Crossref

N/A

Web of Science

20

Scopus

3

CSCD

Altmetrics

Received: 14 September 2020
Revised: 05 November 2020
Accepted: 30 November 2020
Published: 29 December 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return