AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Joule-heated carbonized melamine sponge for high-speed absorption of viscous oil spills

Lu-An Shi§Jin Ge§Bi-Cheng HuTao MaHaoyu ZhaoYong-Hong SongChao LiShu-Hong Yu( )
Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China

§ Lu-An Shi and Jin Ge contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Introducing heating function to oil sorbents opens up a new pathway to the fast cleanup of viscous crude oil spills in situ. The oil sorption speed increases with the rise of the temperature, thus oil sorbents with high heating temperature are desirable. Besides, the oil sorbents also need to be produced environment-friendly. Here we present carbonized melamine-formaldehyde sponges (CMSs) that exhibited superior heating performance and the CMSs could be massively fabricated through a non-polluting pyrolysis process. The conductive CMSs could be heated over 300 °C with a low applied voltage of 6.9 V and keep above 250 °C for 30 min in the air without obvious damage. Such high heating performance enabled heating up the oil spills with a high rate of 2.65 °C·s-1 and 14% improvement of oil sorption coefficient compared with the state-of-the-art value. We demonstrated that one joule-heated CMS could continuously and selectively collect viscous oil spills (9,010 mPa·s) 690 times its own weight in one hour. The CMSs will be a highly competitive sorbent material for the fast remediation of future crude oil spills.

Electronic Supplementary Material

Video
12274_2020_3274_MOESM1_ESM.mp4
12274_2020_3274_MOESM2_ESM.avi
12274_2020_3274_MOESM3_ESM.avi
12274_2020_3274_MOESM4_ESM.avi
12274_2020_3274_MOESM5_ESM.avi
12274_2020_3274_MOESM6_ESM.avi
12274_2020_3274_MOESM7_ESM.avi
12274_2020_3274_MOESM8_ESM.avi
12274_2020_3274_MOESM9_ESM.avi
Download File(s)
12274_2020_3274_MOESM10_ESM.pdf (2 MB)

References

[1]
Peterson, C. H.; Rice, S. D.; Short, J. W.; Esler, D.; Bodkin, J. L.; Ballachey, B. E.; Irons, D. B. Long-term ecosystem response to the exxon valdez oil spill. Science 2003, 302, 2082-2086.
[2]
Joye, S. B. Deepwater horizon, 5 years on. Science 2015, 349, 592-593.
[3]
Schrope, M. Oil spill: Deep wounds. Nature 2011, 472, 152-154.
[4]
Broje, V.; Keller, A. A. Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface. Environ. Sci. Technol. 2006, 40, 7914-7918.
[5]
Paul, J. H.; Hollander, D.; Coble, P.; Daly, K. L.; Murasko, S.; English, D.; Basso, J.; Delaney, J.; McDaniel, L.; Kovach, C. W. Toxicity and mutagenicity of gulf of mexico waters during and after the deepwater horizon oil spill. Environ. Sci. Technol. 2013, 47, 9651-9659.
[6]
Kujawinski, E. B.; Soule, M. C. K.; Valentine, D. L.; Boysen, A. K.; Longnecker, K.; Redmond, M. C. Fate of dispersants associated with the deepwater horizon oil spill. Environ. Sci. Technol. 2011, 45, 1298-1306.
[7]
Wang, C.; Chen, Q.; Sun, F.; Zhang, D. Q.; Zhang, G. X.; Huang, Y. Y.; Zhao, R.; Zhu, D. B. Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups: Reversible tuning of the gel-sol transition by redox reactions and light irradiation. J. Am. Chem. Soc. 2010, 132, 3092-3096.
[8]
Song, Y. Y.; Zhou, J. J.; Fan, J. B.; Zhai, W. Z.; Meng, J. X.; Wang, S. T. Hydrophilic/oleophilic magnetic janus particles for the rapid and efficient oil-water separation. Adv. Funct. Mater. 2018, 28, 1802493.
[9]
Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Natl. Sci. Rev. 2017, 2, 17036.
[10]
Yuan, J. K.; Liu, X. G.; Akbulut, O.; Hu, J. Q.; Suib, S. L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332-336.
[11]
Hayase, G.; Kanamori, K.; Fukuchi, M.; Kaji, H.; Nakanishi, K. Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew. Chem., Int. Ed. 2013, 52, 1986-1989.
[12]
Zhang, J. Y.; Cheng, Y. H.; Tebyetekerwa, M.; Meng, S.; Zhu, M. F.; Lu, Y. F. “Stiff-soft” binary synergistic aerogels with superflexibility and high thermal insulation performance. Adv. Funct. Mater. 2019, 29, 1806407.
[13]
Wu, C.; Huang, X. Y.; Wu, X. F.; Qian, R.; Jiang, P. K. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv. Mater. 2013, 25, 5658-5662.
[14]
Zhang, X. Y.; Li, Z.; Liu, K. S.; Jiang, L. Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv. Funct. Mater. 2013, 23, 2881-2886.
[15]
Cui, Y.; Wang, Y. J.; Shao, Z. Y.; Mao, A. R.; Gao, W. W.; Bai, H. Smart sponge for fast liquid absorption and thermal responsive self-squeezing. Adv. Mater. 2020, 32, 1908249.
[16]
Si, Y.; Yu, J. Y.; Tang, X. M.; Ge, J. L.; Ding, B. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802.
[17]
Liang, H. W.; Guan, Q. F.; Chen, L. F.; Zhu, Z.; Zhang, W. J.; Yu, S. H. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem., Int. Ed. 2012, 51, 5101-5105.
[18]
Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554-2560.
[19]
Wang, H. T.; Mi, X. Y.; Li, Y.; Zhan, S. H. 3D graphene-based macrostructures for water treatment. Adv. Mater. 2020, 32, 1806843.
[20]
Yousefi, N.; Lu, X. L.; Elimelech, M.; Tufenkji, N. Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 2019, 14, 107-119.
[21]
Kuang, Y. D.; Chen, C. J.; Chen, G.; Pei, Y.; Pastel, G.; Jia, C.; Song, J. W.; Mi, R. Y.; Yang, B.; Das, S. et al. Bioinspired solar-heated carbon absorbent for efficient cleanup of highly viscous crude oil. Adv. Funct. Mater. 2019, 29, 1900162.
[22]
Laitinen, O.; Suopajärvi, T.; Österberg, M.; Liimatainen, H. Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl. Mater. Interfaces 2017, 9, 25029-25037.
[23]
Ge, J.; Zhao, H. Y.; Zhu, H. W.; Huang, J.; Shi, L. A.; Yu, S. H. Advanced sorbents for oil-spill cleanup: Recent advances and future perspectives. Adv. Mater. 2016, 28, 10459-10490.
[24]
Yang W. C. Wang, H. Modeling of oil evaporation in aqueous environment. Water Res. 1977, 11, 879-887.
[25]
Escardino, A.; Beltrán, V.; Barba, A.; Sánchez, E. Liquid suction by porous ceramic materials 4: Influence of firing conditions. Br. Ceram. Trans. 1999, 98, 225-229.
[26]
Meza, L. R.; Das, S.; Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 2014, 345, 1322-1326.
[27]
Jang, J. H.; Ullal, C. K.; Maldovan, M.; Gorishnyy, T.; Kooi, S.; Koh, C.; Thomas, E. L. 3D micro- and nanostructures via interference lithography. Adv. Funct. Mater. 2007, 17, 3027-3041.
[28]
Saha, S. K.; Wang, D. E.; Nguyen, V. H.; Chang, Y. N.; Oakdale, J. S.; Chen, S. C. Scalable submicrometer additive manufacturing. Science 2019, 366, 105-109.
[29]
Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.
[30]
Guo, F.; Jiang, Y. Q.; Xu, Z.; Xiao, Y. H.; Fang, B.; Liu, Y. J.; Gao, W. W.; Zhao, P.; Wang, H. T.; Gao, C. Highly stretchable carbon aerogels. Nat. Commun. 2018, 9, 881.
[31]
Siéfert, E.; Reyssat, E.; Bico, J.; Roman, B. Bio-inspired pneumatic shape-morphing elastomers. Nat. Mater. 2019, 18, 24-28.
[32]
Fragouli, D.; Athanassiou, A. Graphene heaters absorb faster. Nat. Nanotechnol. 2017, 12, 406-407.
[33]
Ge, J.; Shi, L. A.; Wang, Y. C.; Zhao, H. Y.; Yao, H. B.; Zhu, Y. B.; Zhang, Y.; Zhu, H. W.; Wu, H. A.; Yu, S. H. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 2017, 12, 434-440.
[34]
Zhang, C.; Wu, M. B.; Wu, B. H.; Yang, J.; Xu, Z. K. Solar-driven self-heating sponges for highly efficient crude oil spill remediation. J. Mater. Chem. A 2018, 6, 8880-8885.
[35]
Yu, M.; Xu, P.; Yang, J.; Ji, L.; Li, C. S. Self-growth of MoS2 sponge for highly efficient photothermal cleanup of high-viscosity crude oil spills. Adv. Mater. Interfaces 2020, 7, 1901671.
[36]
Think bigger. Nat. Nanotechnol. 2017, 12, 395.
[37]
Moore, W R.; Donnelly, E. Thermal degradation of melamine-formaldehyde resins. J. Chem. Technol. Biotechnol. 1963, 13, 537-543.
[38]
Bin, D. S.; Lin, X. J.; Sun, Y. G.; Xu, Y. S.; Zhang, K.; Cao, A. M.; Wan, L. J. Engineering hollow carbon architecture for high-performance k-ion battery anode. J. Am. Chem. Soc. 2018, 140, 7127-7134.
[39]
Anderson, I. H.; Cawley, M.; Steedman, W. Melamine-formaldehyde resins II.—Thermal degradation of model compounds and resins. Br. Polym. J. 1971, 3, 86-92.
[40]
Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 1995, 270, 590-593.
[41]
Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 2018, 30, 1706216.
[42]
Nishi, Y.; Dai, G. Z.; Iwashita, N.; Sawada, Y.; Inagaki, M. Evaluation of sorption behavior of heavy oil into exfoliated graphite by wicking test. J. Soc. Mater. Sci. Jpn. 2002, 51, 243-248.
[43]
Ge, J.; Ye, Y. D.; Yao, H. B.; Zhu, X.; Wang, X.; Wu, L.; Wang, J. L.; Ding, H.; Yong, N.; He, L. H. et al. Pumping through porous hydrophobic/oleophilic materials: An alternative technology for oil spill remediation. Angew. Chem., Int. Ed. 2014, 53, 3612-3616.
Nano Research
Pages 2697-2702
Cite this article:
Shi L-A, Ge J, Hu B-C, et al. Joule-heated carbonized melamine sponge for high-speed absorption of viscous oil spills. Nano Research, 2021, 14(8): 2697-2702. https://doi.org/10.1007/s12274-020-3274-y
Topics:

822

Views

36

Crossref

30

Web of Science

33

Scopus

2

CSCD

Altmetrics

Received: 18 October 2020
Revised: 25 November 2020
Accepted: 30 November 2020
Published: 12 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return