AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controlling phase transition in WSe2 towards ideal n-type transistor

Yue Zheng1,2Du Xiang3( )Jialin Zhang3Rui Guo3Wenhui Wang4Tao Liu3Leyi Loh5Yanan Wang2Jing Gao2Cheng Han1Michel Bosman5Zhenhua Ni4Wei Chen2,3,6,7( )
SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
Department of Physics, National University of Singapore, Singapore 117551, Singapore
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
School of Physics and the Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been rapidly established as promising building blocks for versatile atomic scale circuits and multifunctional devices. However, the high contact resistance in TMDs based transistors seriously hinders their applications in complementary electronics. In this work, we show that an Ohmic homojunction n-type tungsten diselenide (WSe2) transistor is realized through spatially controlling cesium (Cs) doping region near the contacts. We find that the remarkable electron doping effect of Cs stimulates a semiconductor to metal (2H to 1T’) phase transition in WSe2, and hence the formation of 2H-1T’ hetero-phase contact. Our method significantly optimizes the WSe2 transport behavior with a perfect low subthreshold swing of ~ 61 mV/dec and ultrahigh current on/off ratio exceeding ~ 109. Meanwhile, the electron mobility is enhanced by nearly 50 times. We elucidate that the ideal n-type behavior originates from the negligible Schottky barrier height of ~ 19 meV and low contact resistance of ~ 0.9 kΩ·μm in the 2H-1T’ homojunction device. Moreover, based on the Ohmic hetero-phase configuration, a WSe2 inverter is achieved with a high gain of ~ 270 and low power consumption of ~ 28 pW. Our findings envision Cs functionalization as an effective method to realize ideal Ohmic contact in 2D WSe2 transistors towards high performance complementary electronic devices.

Electronic Supplementary Material

Download File(s)
12274_2020_3275_MOESM1_ESM.pdf (2.3 MB)

References

[1]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[2]
Shen, D. W.; Xie, B. P.; Zhao, J. F.; Yang, L. X.; Fang, L.; Shi, J.; He, R. H.; Lu, D. H.; Wen, H. H.; Feng. D. L. Novel mechanism of a charge density wave in a transition metal dichalcogenide. Phys. Rev. Lett. 2007, 99, 216404.
[3]
Sun, L. Y.; Wang, C. Y.; Krasnok, A.; Choi, J.; Shi, J. W.; Gomez-Diaz, J. S.; Zepeda, A.; Gwo, S.; Shih, C. K.; Alù, A. et al. Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array. Nat. Photonics 2019, 13, 180-184.
[4]
Katoch, J.; Ulstrup, S.; Koch, R. J.; Moser, S.; McCreary, K. M.; Singh, S.; Xu, J. S.; Jonker, B. T.; Kawakami, R. K.; Bostwick, A. et al. Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures. Nat. Phys. 2018, 14, 355-359.
[5]
Ugeda, M. M.; Pulkin, A.; Tang, S. J.; Ryu, H.; Wu, Q. S.; Zhang, Y.; Wong, D.; Pedramrazi, Z.; Martín-Recio, A.; Chen, Y. et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 2018, 9, 3401.
[6]
Liu, C. X. Unconventional superconductivity in bilayer transition metal dichalcogenides. Phys. Rev. Lett. 2017, 118, 087001.
[7]
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[8]
Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.
[9]
Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262-267.
[10]
Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100-3128.
[11]
Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-1205.
[12]
Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037-3058.
[13]
Zwanenburg, F. A.; Dzurak, A. S.; Morello, A.; Simmons, M. Y.; Hollenberg, L. C. L.; Klimeck, G.; Rogge, S.; Coppersmith, S. N.; Eriksson, M. A. Silicon quantum electronics. Rev. Mod. Phys. 2013, 85, 961-1019.
[14]
Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653-8661.
[15]
Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983-1990.
[16]
Wang, T. J.; Andrews, K.; Bowman, A.; Hong, T.; Koehler, M.; Yan, J. Q.; Mandrus, D.; Zhou, Z. X.; Xu, Y. Q. High-performance WSe2 phototransistors with 2D/2D Ohmic contacts. Nano Lett. 2018, 18, 2766-2771.
[17]
Chuang, H. J.; Tan, X. B.; Ghimire, N. J.; Perera, M. M.; Chamlagain, B.; Cheng, M. M. C.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 2014, 14, 3594-3601.
[18]
Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991-1995.
[19]
Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302-8308.
[20]
Yang, Z.; Kim, C.; Lee, K. Y.; Lee, M.; Appalakondaiah, S.; Ra, C. H.; Watanabe, K.; Taniguchi, T.; Cho, K.; Hwang, E. et al. A fermi-level-pinning-free 1D electrical contact at the intrinsic 2D MoS2- metal junction. Adv. Mater. 2019, 31, 1808231.
[21]
English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016, 16, 3824-3830.
[22]
Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.
[23]
Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70-74.
[24]
Shen, T.; Ren, J. C.; Liu, X. Y.; Li, S.; Liu, W. van der Waals stacking induced transition from Schottky to ohmic contacts: 2D metals on multilayer InSe. J. Am. Chem. Soc. 2019, 141, 3110-3115.
[25]
Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.
[26]
Bardeen, J. Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 1947, 71, 717-727.
[27]
Tung, R. T. Chemical bonding and Fermi level pinning at metal- semiconductor interfaces. Phys. Rev. Lett. 2000, 84, 6078-6081.
[28]
Chen, P.; Pai, W. W.; Chan, Y. H.; Sun, W. L.; Xu, C. Z.; Lin, D. S.; Chou, M. Y.; Fedorov, A. V.; Chiang, T. C. Large quantum-spin-Hall gap in single-layer 1T′ WSe2. Nat. Commun. 2018, 9, 2003.
[29]
Starnberg, H. I. Recent developments in alkali metal intercalation of layered transition metal dichalcogenides. Mod. Phys. Lett. B 2000, 14, 455-471.
[30]
Brauer, H. E.; Starnberg, H. I.; Holleboom, L. J.; Hughes, H. P. The electronic structure of ZrSe2 and CsxZrSe2 studied by angle-resolved photoelectron spectroscopy. J. Phys. Condens. Matter 1995, 7, 7741-7760.
[31]
Brauer, H. E.; Starnberg, H. I.; Holleboom, L. J.; Strocov, V. N.; Hughes, H. P. Electronic structure of pure and alkali-metal-intercalated VSe2. Phys. Rev. B 1998, 58, 10031.
[32]
Brauer, H. E.; Starnberg, H. I.; Holleboom, L. J.; Hughes, H. P.; Strocov, V. N. Modifying the electronic structure of TiS2 by alkali metal intercalation. J. Phys. Condens. Matter 1999, 11, 8957-8973.
[33]
Park, J. H.; Vishwanath, S.; Liu, X. Y.; Zhou, H. W.; Eichfeld, S. M.; Fullerton-Shirey, S. K.; Robinson, J. A.; Feenstra, R. M.; Furdyna, J.; Jena, D. et al. Scanning tunneling microscopy and spectroscopy of air exposure effects on molecular beam epitaxy grown WSe2 monolayers and bilayers. ACS Nano 2016, 10, 4258-4267.
[34]
Le Quang, T.; Cherkez, V.; Nogajewski, K.; Potemski, M.; Dau, M. T.; Jamet, M.; Mallet, P.; Veuillen, J. Y. Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: Absence of Fermi level pinning. 2D Mater. 2017, 4, 035019.
[35]
Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638-643.
[36]
Tan, S. J. R.; Abdelwahab, I.; Ding, Z. J.; Zhao, X. X.; Yang, T. S.; Loke, G. Z. J.; Lin, H.; Verzhbitskiy, I.; Poh, S. M.; Xu, H. et al. Chemical stabilization of 1T′ phase transition metal dichalcogenides with giant optical Kerr nonlinearity. J. Am. Chem. Soc. 2017, 139, 2504-2511.
[37]
Hölzl, J; Schulte, F. K. Work function of metals. In Solid Surface Physics; Hölzl, J.; Schulte, F. K.; Wagner, H., Eds.; Springer: Berlin, 1979; pp 1-150.
[38]
Lei, B.; Pan, Y. Y.; Hu, Z. H.; Zhang, J. L.; Xiang, D.; Zheng, Y.; Guo, R.; Han, C.; Wang, L. H.; Lu, J. et al. Direct observation of semiconductor-metal phase transition in bilayer tungsten diselenide induced by potassium surface functionalization. ACS Nano 2018, 12, 2070-2077.
[39]
Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815-820.
[40]
Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.
[41]
Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625-628.
[42]
Xu, X. L.; Liu, S.; Han, B.; Han, Y. M.; Yuan, K.; Xu, W. J.; Yao, X. H.; Li, P.; Yang, S. Q.; Gong, W. T. et al. Scaling-up atomically thin coplanar semiconductor-metal circuitry via phase engineered chemical assembly. Nano Lett. 2019, 19, 6845-6852.
[43]
Tosun, M.; Chan, L.; Amani, M.; Roy, T.; Ahn, G. H.; Taheri, P.; Carraro, C.; Ager, J. W.; Maboudian, R.; Javey, A. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 2016, 10, 6853-6860.
[44]
Tosun, M.; Chuang, S.; Fang, H.; Sachid, A. B.; Hettick, M.; Lin, Y. J.; Zeng, Y. P.; Javey, A. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 2014, 8, 4948-4953.
[45]
Jung, Y.; Choi, M. S.; Nipane, A.; Borah, A.; Kim, B.; Zangiabadi, A.; Taniguchi, T.; Watanabe, K.; Yoo, W. J.; Hone, J. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2019, 2, 187-194.
[46]
Chuang, H. J.; Chamlagain, B.; Koehler, M.; Perera, M. M.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 2016, 16, 1896-1902.
[47]
Movva, H. C. P.; Rai, A.; Kang, S.; Kim, K.; Fallahazad, B.; Taniguchi, T.; Watanabe, K.; Tutuc, E.; Banerjee, S. K. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 2015, 9, 10402-10410.
[48]
Wang, J. I. J.; Yang, Y. F.; Chen, Y. A.; Watanabe, K.; Taniguchi, T.; Churchill, H. O. H.; Jarillo-Herrero, P. Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. Nano Lett. 2015, 15, 1898-1903.
[49]
Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788-3792.
[50]
Pezeshki, A.; Hosseini Shokouh, S. H.; Jeon, P. J.; Shackery, I.; Kim, J. S.; Oh, I. K.; Jun, S. C.; Kim, H.; Im, S. Static and dynamic performance of complementary inverters based on nanosheet α-MoTe2 p-channel and MoS2 n-channel transistors. ACS Nano 2016, 10, 1118-1125.
[51]
Zheng, Y.; Hu, Z. H.; Han, C.; Guo, R.; Xiang, D.; Lei, B.; Wang, Y. A.; He, J.; Lai, M.; Chen, W. Black phosphorus inverter devices enabled by in-situ aluminum surface modification. Nano Res. 2019, 12, 531-536.
[52]
Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 2016, 16, 2145-2151.
[53]
Yu, L. L.; El-Damak, D.; Radhakrishna, U.; Ling, X.; Zubair, A.; Lin, Y. X.; Zhang, Y. H.; Chuang, M. H.; Lee, Y. H.; Antoniadis, D. et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett. 2016, 16, 6349-6356.
[54]
Wachter, S.; Polyushkin, D. K.; Bethge, O.; Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 2017, 8, 14948.
[55]
Huang, M. Q.; Li, S. M.; Zhang, Z. F.; Xiong, X.; Li, X. F.; Wu, Y. Q. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 2017, 12, 1148-1154.
[56]
Qi, D. Y.; Han, C.; Rong, X. M.; Zhang, X. W.; Chhowalla, M.; Wee, A. T. S.; Zhang, W. J. Continuously tuning electronic properties of few-layer molybdenum ditelluride with in situ aluminum modification toward ultrahigh gain complementary inverters. ACS Nano 2019, 13, 9464-9472.
[57]
Liu, T.; Xiang, D.; Zheng, Y.; Wang, Y. A.; Wang, X. Y.; Wang, L.; He, J.; Liu, L.; Chen, W. Nonvolatile and programmable photodoping in MoTe2 for photoresist-free complementary electronic devices. Adv. Mater. 2018, 30, e1804470.
[58]
Pu, J.; Funahashi, K.; Chen, C. H.; Li, M. Y.; Li, L. J.; Takenobu, T. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 2016, 28, 4111-4119.
[59]
Kong, L. G.; Zhang, X. D.; Tao, Q. Y.; Zhang, M. L.; Dang, W. Q.; Li, Z. W.; Feng, L. P.; Liao, L.; Duan, X. F.; Liu, Y. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 2020, 11, 1866.
Nano Research
Pages 2703-2710
Cite this article:
Zheng Y, Xiang D, Zhang J, et al. Controlling phase transition in WSe2 towards ideal n-type transistor. Nano Research, 2021, 14(8): 2703-2710. https://doi.org/10.1007/s12274-020-3275-x
Topics:

850

Views

16

Crossref

17

Web of Science

17

Scopus

3

CSCD

Altmetrics

Received: 19 October 2020
Revised: 25 November 2020
Accepted: 01 December 2020
Published: 04 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return