AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Full-scale chemical and field-effect passivation: 21.52% efficiency of stable MAPbI3 solar cells via benzenamine modification

Fengyou Wang1,2,3Meifang Yang1,3Yuhong Zhang1,3Jinyue Du1,3Shuo Yang4Lili Yang1,2,3( )Lin Fan1,2,3Yingrui Sui1,2,3Yunfei Sun1Jinghai Yang1,2,3( )
Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China
College of Science, Changchun University, Changchun 130022, China
Show Author Information

Graphical Abstract

Abstract

Organic-inorganic metal halide perovskite solar cells have achieved high efficiency of 25.5%. Finding an effective means to suppress the formation of traps and correlate stability losses are thought to be a promising route for further increasing the photovoltaic performance and commercialization potential of perovskite photovoltaic devices. Herein, we report a facile passivation model, which uses a multi-functional organic molecule to simultaneously realize the chemical passivation and field-effect passivation for the perovskite film by an upgraded anti-solvent coating method, which reduces the trap states density of the perovskite, improves interface charge transfer, and thus promotes device performance. In addition, the hydrophobic groups of the molecules can form a moisture-repelling barrier on the perovskite grains, which apparently promotes the humidity stability of the solar cells. Therefore, the optimal power conversion efficiency (PCE) of perovskite solar cells after synergistic passivation reaches 21.52%, and it can still retain 95% of the original PCE when stored in ~ 40% humidity for 30 days. Our findings extend the scope for traps passivation to further promote both the photovoltaic performance and the stability of the perovskite solar cells.

Electronic Supplementary Material

Download File(s)
12274_2021_3286_MOESM1_ESM.pdf (2.3 MB)

References

[1]
Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344-347.
[2]
Kang, C. H.; Dursun, I.; Liu, G. Y.; Sinatra, L.; Sun, X. B.; Kong, M. W.; Pan, J.; Maity, P.; Ooi, E. N.; Ng, T. K. et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light Sci. Appl. 2019, 8, 94.
[3]
Yan, L. L.; Han, C.; Shi, B.; Zhao, Y.; Zhang, X. D. A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells. Mater. Today Nano 2019, 7, 100045.
[4]
Wang, F. Y.; Yang, M. F.; Yang, S.; Qu, X.; Yang, L. L.; Fan, L.; Yang, J. H.; Rosei, F. Iodine-assisted antisolvent engineering for stable perovskite solar cells with efficiency >21.3%. Nano Energy 2020, 67, 104224.
[5]
Best Research-Cell Efficiencies[Online]. NREL, https://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-emergingpv.20200919.pdf (accessed 25 September 2020).
[6]
Wu, W. Q.; Yang, Z. B.; Rudd, P. N.; Shao, Y. C.; Dai, X. Z.; Wei, H. T.; Zhao, J. J.; Fang, Y. J.; Wang, Q.; Liu, Y. et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 2019, 5, eaav8925.
[7]
Huang, D.; Goh, T.; Zheng, Y. F.; Qin, Z. L.; Zhao, J.; Zhao, S. L.; Xu, Z.; Taylor, A. D. An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells. Nano Res. 2018, 11, 2648-2657.
[8]
Wu, W. Q.; Rudd, P. N.; Wang, Q.; Yang, Z. B.; Huang, J. S. Blading phase-pure formamidinium-alloyed perovskites for high-efficiency solar cells with low photovoltage deficit and improved stability. Adv. Mater. 2020, 32, 2000995.
[9]
Fang, H. H.; Wang, F.; Adjokatse, S.; Zhao, N.; Even J.; Loi, M. A. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light Sci. Appl. 2016, 5, e16056.
[10]
Yang, S.; Yao, J. C.; Quan, Y. N.; Hu, M. Y.; Su, R.; Gao, M.; Han, D. L.; Yang, J. H. Monitoring the charge-transfer process in a Nd-doped semiconductor based on photoluminescence and SERS technology. Light Sci. Appl. 2020, 9, 117.
[11]
Wang, Q.; Chen, B.; Liu, Y.; Deng, Y. H.; Bai, Y.; Dong, Q. F.; Huang, J. S. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 2017, 10, 516-522.
[12]
Shao, Y. C.; Fang, Y. J.; Li, T.; Wang, Q.; Dong, Q. F.; Deng, Y. H.; Yuan, Y. B.; Wei, H. T.; Wang, M. Y.; Gruverman, A. et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ. Sci. 2016, 9, 1752-1759.
[13]
Xu, X.; Li, K.; Yang, Z. Z.; Shi, J. J.; Li, D. M.; Gu, L.; Wu, Z. J.; Meng, Q. B. Methylammonium cation deficient surface for enhanced binding stability at TiO2/CH3NH3PbI3 interface. Nano Res. 2017, 10, 483-490.
[14]
Liu, L.; Huang, S.; Lu, Y.; Liu, P. F.; Zhao, Y. Z.; Shi, C. B.; Zhang, S. Y.; Wu, J. F.; Zhong, H. Z.; Sui, M. L. et al. Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability. Adv. Mater. 2018, 30, 1800544.
[15]
Niu, T. Q.; Lu, J.; Munir, R.; Li, J. B.; Barrit, D.; Zhang, X.; Hu, H. L.; Yang, Z.; Amassian, A.; Zhao, K. et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 2018, 30, 1706576.
[16]
Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989-1997.
[17]
Bu, T. L.; Liu, X. P.; Zhou, Y.; Yi, J. P.; Huang, X.; Luo, L.; Xiao, J. Y.; Ku, Z. L.; Peng, Y.; Huang, F. Z. et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 2017, 10, 2509-2515.
[18]
Cho, K. T.; Paek, S.; Grancini, G.; Roldán-Carmona, C.; Gao, P.; Lee, Y.; Nazeeruddin, M. K. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 2017, 10, 621-627.
[19]
Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897-903.
[20]
Xu, J. X.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M. J; Jeon, S.; Ning, Z. J.; McDowell, J. J. et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081.
[21]
Bi, D. Q.; Gao, P.; Scopelliti, R.; Oveisi, E.; Luo, J. S.; Grätzel, M.; Hagfeldt, A.; Nazeeruddin, M. K. High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv. Mater. 2016, 28, 2910-2915.
[22]
Wu, Y. Z.; Yang, X. D.; Chen, W.; Yue, Y. F.; Cai, M. L.; Xie, F. X.; Bi, E. B.; Islam, A.; Han, L. Y. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 2016, 1, 16148.
[23]
Zheng, X. P.; Chen, B. C.; Dai, J.; Fang, Y. J.; Bai, Y.; Lin, Y.; Wei, H. T.; Zeng, X. C.; Huang J. S. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2, 17102.
[24]
Tan, F.; Tan, H.; Saidaminov, M. I.; Wei, M. Y.; Liu, M. X.; Mei, A.; Li, P. C.; Zhang, B. W.; Tan, C. S.; Gong, X. W. et al. In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells. Adv. Mater. 2019, 31, e1807435.
[25]
Peng, J.; Wu, Y. L.; Ye, W.; Jacobs, D. A.; Shen, H. P.; Fu, X.; Wan, Y. M.; Duong, T.; Wu, N. D.; Barugkin, C. et al. Interface passivation using ultrathin polymer-fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ. Sci. 2017, 10, 1792-1800.
[26]
Mahmud, M. A.; Duong, T.; Yin, Y. T.; Peng, J.; Wu, Y. L.; Lu, T.; Pham, H. T.; Shen, H. P.; Walter, D.; Nguyen, H. T. et al. In situ formation of mixed-dimensional surface passivation layers in perovskite solar cells with dual-isomer alkylammonium cations. Small 2020, 16, 2005022.
[27]
Jiang, Q.; Zhao, Y.; Zhang, X. W; Yang, X. L; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460-466.
[28]
Dingemans, G.; Terlinden, N. M.; Pierreux, D.; Profijt, H. B.; van de Sanden, M. C. M.; Kessels, W. M. M. Influence of the oxidant on the chemical and field-effect passivation of Si by ALD Al2O3. Electrochem. Solid-State Lett. 2011, 14, H1.
[29]
Wang, F. Y.; Zhang, Y. H.; Yang, M. F.; Han, D. L.; Yang, L. L.; Fan, L.; Sui, Y. R.; Sun, Y. F.; Liu, X. Y.; Meng, X. W. et al. Interface dipole induced field-effect passivation for achieving 21.7% efficiency and stable perovskite solar cells. Adv. Funct. Mater., in press, .
[30]
Yi, H. T.; Rangan, S.; Tang, B. X.; Frisbie, C. D.; Bartynski, R. A.; Gartstein, Y. N.; Podzorov, V. Electric-field effect on photoluminescence of lead-halide perovskites. Mater. Today 2019, 28, 31-39.
[31]
Hwang, J. M. Plasma charge injection technology and its application to c-Si solar cells for field-effect passivation. J. Appl. Phys. 2019, 125, 173301.
[32]
Glunz, S. W.; Biro, D.; Rein, S.; Warta, W. Field-effect passivation of the SiO2Si interface. J. Appl. Phys. 1999, 86, 683-691.
[33]
Yu, P. C.; Tsai, C. Y.; Chang, J. K.; Lai, C. C.; Chen, P. H.; Lai Y. C.; Tsai P. T.; Li, M. C.; Pan, H. T.; Huang, Y. Y. et al. 13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS Nano 2013, 7, 10780-10787.
[34]
Kong, W. G.; Li, W.; Liu, C. W.; Liu, H.; Miao, J.; Wang, W. J.; Chen, S.; Hu, M. M.; Li, D. D.; Amini, A. et al. Organic monomolecular layers enable energy-level matching for efficient hole transporting layer free inverted perovskite solar cells. ACS Nano 2019, 13, 1625-1634.
[35]
Yang, L. Y.; Cai, F. L.; Yan, Y.; Li, J. H.; Liu, D.; Pearson, A. J.; Wang, T. Conjugated small molecule for efficient hole transport in high-performance p-i-n type perovskite solar cells. Adv. Funct. Mater. 2017, 27, 1702613.
[36]
Kalinowski, J.; Giro, G.; Cocchi, M.; Fattori, V.; Marco, P. D. Unusual disparity in electroluminescence and photoluminescence spectra of vacuum-evaporated films of 1,1-bis((di-4-tolylamino)phenyl) cyclohexane. Appl. Phys. Lett. 2000, 76, 2352-2354.
[37]
Heymans, N. FTIR investigation of structural modification of polycarbonate during thermodynamical treatments. Polymer 1997, 38, 3435-3440.
[38]
Khan, F.; Khanna, S.; Hor, A. M.; Sundararajan, P. R. Sundararajan, P. R. The role of molecular volume and the shape of the hole transport molecule in the morphology of model charge transport composites. Can. J. Chem. 2010, 88, 247-259.
[39]
Jin, S.; Wei, Y. L.; Huang, F. Y.; Yang, X. M.; Luo, D.; Fang, Y.; Zhao, Y. Z.; Guo, Q. Y.; Huang, Y. F.; Wu, J. H. Enhancing the perovskite solar cell performance by the treatment with mixed anti-solvent. J. Power Sources 2018, 404, 64-72.
[40]
Wang, F. Y.; Yang, M. F.; Zhang, Y. H.; Yang, L. L.; Fan, L.; Lv, S. Q.; Liu, X. Y.; Han, D. L.; Yang, J. H. Activating old materials with new architecture: Boosting performance of perovskite solar cells with H2O-assisted hierarchical electron transporting layers. Adv. Sci. 2019, 6, 1801170.
[41]
Li, X. Q.; Li, W. H.; Yang, Y. J.; Lai, X.; Su, Q.; Wu, D.; Li, G. Q.; Wang, K.; Chen, S. M.; Sun, X. W. et al. Defects passivation with dithienobenzodithiophene based π-conjugated polymer for enhanced performance of perovskite solar cells. Sol. RRL 2019, 3, 1900029.
[42]
Zhang, C. C.; Li, M.; Wang, Z. K.; Jiang, Y. R.; Liu, H. R.; Yang, Y. G.; Gao, X. Y.; Ma, H. Passivated perovskite crystallization and stability in organic-inorganic halide solar cells by doping a donor polymer. J. Mater. Chem. A 2017, 5, 2572-2579.
[43]
Privitera, A.; Righetto, M.; De Bastiani, M.; Carraro, F.; Rancan, M.; Armelao, L.; Granozzi, G.; Bozio, R.; Franco, L. Hybrid organic/inorganic perovskite-polymer nanocomposites: Toward the enhancement of structural and electrical properties. J. Phys. Chem. Lett. 2017, 8, 5981-5986.
[44]
Wu, Y. Q.; Wang, P.; Zhu, X. L.; Zhang, Q. Q.; Wang, Z. Y.; Liu, Y. Y.; Zou, G. Z.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 2018, 30, 1704342.
[45]
Wang, F. Y.; Zhang, Y. H.; Yang, M. F.; Yang, L. L.; Sui, Y. R.; Yang, J. H.; Zhao, Y.; Zhang, X. D. Realization of 16.9% efficiency on nanowires heterojunction solar cells with dopant-free contact for bifacial polarities. Adv. Funct. Mater. 2018, 28, 1805001.
[46]
Wang, F. Y.; Zhang, Y. H.; Yang, M. F.; Du, J. Y.; Xue, L. L.; Yang, L. L.; Fan, L.; Sui, Y. R.; Yang, J. H.; Zhang, X. D. Exploring low-temperature processed a-WOx/SnO2 hybrid electron transporting layer for perovskite solar cells with efficiency >20.5%. Nano Energy 2019, 63, 103825.
[47]
Staub, F.; Hempel, H.; Hebig, J. C.; Mock, J.; Paetzold, U. W.; Rau, U.; Unold, T.; Kirchartz, T. Beyond bulk lifetimes: Insights into lead halide perovskite films from time-resolved photoluminescence. Phys. Rev. Appl. 2016, 6, 044017.
[48]
He, Z. C.; Zhong, C. M.; Huang, X.; Wong, W. Y.; Wu, H. B.; Chen, L. W.; Su, S. J.; Cao, Y. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 2011, 23, 4636-4643.
[49]
Tan, W. Y.; Wang, R.; Li, M.; Liu, G.; Chen, P.; Li, X. C.; Lu, S. M.; Zhu, H. L.; Peng, Q. M.; Zhu, X. H. et al. Lending triarylphosphine oxide to phenanthroline: A facile approach to high-performance organic small-molecule cathode interfacial material for organic photovoltaics utilizing air-stable cathodes. Adv. Funct. Mater. 2014, 24, 6540-6547.
[50]
Xie, J. S.; Huang, K.; Yu, X. G.; Yang, Z. R.; Xiao, K.; Qiang, Y. P.; Zhu, X. D.; Xu, L. B.; Wang, P.; Cui, C. et al. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 2017, 11, 9176-9182.
[51]
Pockett, A.; Eperon, G. E.; Peltola, T.; Snaith, H. J.; Walker, A.; Peter, L. M.; Cameron, P. J. Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy. J. Phys. Chem. C 2015, 119, 3456-3465.
[52]
Bai, Y.; Dong, Q. F.; Shao, Y. C.; Deng, Y. H.; Wang, Q.; Shen, L.; Wang, D.; Wei, W.; Huang, J. S. Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat. Commun. 2016, 7, 12806.
[53]
Cho, Y.; Soufiani, A. M.; Yun, J. S.; Kim, J.; Lee, D. S.; Seidel, J.; Deng, X. F.; Green, M. A.; Huang, S. J.; Ho-Baillie, A. W. Y. Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability. Adv. Energy Mater. 2018, 8, 1703392.
[54]
Liu, K. K.; Liu, Q.; Yang, D. W.; Liang, Y. C.; Sui, L. Z.; Wei, J. Y.; Xue, G. W.; Zhao, W. B.; Wu, X. Y.; Dong, L. et al. Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light Sci. Appl. 2020, 9, 44.
[55]
Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. b.; Duan, H. S.; Hong, Z.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.
Nano Research
Pages 2783-2789
Cite this article:
Wang F, Yang M, Zhang Y, et al. Full-scale chemical and field-effect passivation: 21.52% efficiency of stable MAPbI3 solar cells via benzenamine modification. Nano Research, 2021, 14(8): 2783-2789. https://doi.org/10.1007/s12274-021-3286-2
Topics:

949

Views

24

Crossref

85

Web of Science

27

Scopus

3

CSCD

Altmetrics

Received: 09 October 2020
Revised: 30 November 2020
Accepted: 07 December 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return