AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (16.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Angle-tunable intersubband photoabsorption and enhanced photobleaching in twisted bilayer grapheme

Eva A. A. Pogna1Xianchong Miao2Driele von Dreifus3Thonimar V. Alencar4Marcus V. O. Moutinho5Pedro Venezuela6Cristian Manzoni7Minbiao Ji2( )Giulio Cerullo7( )Ana Maria de Paula3( )
Istituto di Nanoscienze CNR-NANO, Laboratory NEST, Piazza San Silvestro 12, Pisa 56127, Italy
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte-MG 31270-901, Brazil
Departamento de Física, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto-MG 35400-000, Brazil
Núcleo Multidisciplinar de Pesquisas em Computação - NUMPEX-COMP, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias-RJ 25265-970, Brazil
Instituto de Física, Universidade Federal Fluminense, UFF, Niterói-RJ 24210-346, Brazil
IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano 20133, Italy
Show Author Information

Graphical Abstract

Abstract

Van der Waals heterostructures obtained by artificially stacking two-dimensional crystals represent the frontier of material engineering, demonstrating properties superior to those of the starting materials. Fine control of the interlayer twist angle has opened new possibilities for tailoring the optoelectronic properties of these heterostructures. Twisted bilayer graphene with a strong interlayer coupling is a prototype of twisted heterostructure inheriting the intriguing electronic properties of graphene. Understanding the effects of the twist angle on its out-of-equilibrium optical properties is crucial for devising optoelectronic applications. With this aim, we here combine excitation-resolved hot photoluminescence with femtosecond transient absorption microscopy. The hot charge carrier distribution induced by photo-excitation results in peaked absorption bleaching and photo-induced absorption bands, both with pronounced twist angle dependence. Theoretical simulations of the electronic band structure and of the joint density of states enable to assign these bands to the blocking of interband transitions at the van Hove singularities and to photo-activated intersubband transitions. The tens of picoseconds relaxation dynamics of the observed bands is attributed to the angle-dependence of electron and phonon heat capacities of twisted bilayer graphene.

Electronic Supplementary Material

Download File(s)
12274_2021_3288_MOESM1_ESM.pdf (3.3 MB)

References

[1]
Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.
[2]
Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899-907.
[3]
Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. K. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598-4810.
[4]
Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[5]
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[6]
Zhong, D.; Seyler, K. L.; Linpeng, X.; Cheng, R.; Sivadas, N.; Huang, B.; Schmidgall, E.; Taniguchi, T.; Watanabe, K.; McGuire, M. A. et al. Van der waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 2017, 3, e1603113.
[7]
Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Room-temperature electrical control of exciton flux in a van der Waals Heterostructure. Nature 2018, 560, 340-344.
[8]
Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotech. 2019, 14, 408-419.
[9]
Mishchenko, A.; Tu, J. S.; Cao, Y; Gorbachev, R. V.; Wallbank, J. R.; Greenaway, M. T.; Morozov, V. E.; Morozov, S. V.; Zhu, M. J.; Wong, S. L. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 2014, 9, 808-813.
[10]
Ribeiro-Palau, R.; Zhang, C. J.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. R. Twistable electronics with dynamically rotatable heterostructures. Science 2018, 361, 690-693.
[11]
Kockum, A. F.; Miranowicz, A.; De Liberato, S.; Savasta, S.; Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 2019, 1, 19-40.
[12]
Dean, C.; Young, A. F.; Wang, L.; Meric, I.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Shepard, K.; Kim, P.; Hone, J. Graphene based heterostructures. Solid State Commun. 2012, 152, 1275-1282.
[13]
Ju, L.; Shi, Z. W.; Nair, N.; Lv, Y. C.; Jin, C. H.; Velasco Jr, J.; Ojeda-Aristizabal, C.; Bechtel, H. A.; Martin, M. C.; Zettl, A. et al. Topological valley transport at bilayer graphene domain walls. Nature 2015, 520, 650-655.
[14]
Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43-50.
[15]
Sunku, S. S.; Ni, G. X.; Jiang, B. Y.; Yoo, H.; Sternbach, A.; McLeod, A. S.; Stauber, T.; Xiong, L.; Taniguchi, T.; Watanabe, K. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 2018, 362, 1153-1156.
[16]
Li, G. H.; Luican, A.; Dos Santos, J. M. B. L.; Neto, A. H. C.; Reina, A.; Kong, J.; Andrei, E. Y. Observation of van Hove singularities in twisted graphene layers. Nat. Phys. 2010, 6, 109-113.
[17]
Zou, X. Q.; Shang, J. Z.; Leaw, J.; Luo, Z. Q.; Luo, L. Y.; La-O-Vorakiat, C.; Cheng, L.; Cheong, S. A.; Su, H. B.; Zhu, J. X. et al. Terahertz conductivity of twisted bilayer graphene. Phys. Rev. Lett. 2013, 110, 067401.
[18]
Wang, Y. Y.; Ni, Z. H.; Liu, L.; Liu, Y. H.; Cong, C. X.; Yu, T.; Wang, X. J.; Shen, D. Z.; Shen, Z. X. Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 2010, 4, 4074-4080.
[19]
Havener, R. W.; Liang, Y. F.; Brown, L.; Yang, L.; Park, J. Van Hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene. Nano Lett. 2014, 14, 3353-3357.
[20]
Alencar, T. V.; Von Dreifus, D.; Moreira, M. G. C.; Eliel, G. S. N.; Yeh, C. H.; Chiu, P. W.; Pimenta, M. A.; Malard, L. M.; de Paula, A. M. Twisted bilayer graphene photoluminescence emission peaks at van hove singularities. J. Phys. Condens. Matter 2018, 30, 175302.
[21]
Dos Santos, J. M. B. L.; Peres, N. M. R.; Neto, A. H. C. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett. 2007, 99, 256802.
[22]
Tabert, C. J.; Nicol, E. J. Optical conductivity of twisted bilayer graphene. Phys. Rev. B 2013, 87, 121402.
[23]
Moon, P.; Koshino, M. Optical absorption in twisted bilayer graphene. Phys. Rev. B 2013, 87, 205404.
[24]
Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.; Nori, F. Electronic properties of graphene-based bilayer systems. Phys. Rep. 2016, 648, 1-104.
[25]
Yin, J. B.; Wang, H.; Peng, H.; Tan, Z. J.; Liao, L.; Lin, L.; Sun, X.; Koh, A. L.; Chen, Y. L.; Peng, H. L. et al. Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat. Commun. 2016, 7, 10699.
[26]
Sun, D.; Wu, Z. K.; Divin, C.; Li, X. B.; Berger, C.; De Heer, W. A.; First, P. N.; Norris, T. B. Ultrafast relaxation of excited dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 2008, 101, 157402.
[27]
Newson, R. W.; Dean, J.; Schmidt, B.; Van Driel, H. M. Ultrafast carrier kinetics in exfoliated graphene and thin graphite films. Opt. Express 2009, 17, 2326-2333.
[28]
Strait, J. H.; Wang, H. N.; Shivaraman, S.; Shields, V.; Spencer, M.; Rana, F. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Lett. 2011, 11, 4902-4906.
[29]
Breusing, M.; Kuehn, S.; Winzer, T.; Malić, E.; Milde, F.; Severin, N.; Rabe, J. P.; Ropers, C.; Knorr, A.; Elsaesser, T. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Phys. Rev. B 2011, 83, 153410.
[30]
Brida, D.; Tomadin, A.; Manzoni, C.; Kim, Y. J.; Lombardo, A.; Milana, S.; Nair, R. R.; Novoselov, K. S.; Ferrari, A. C.; Cerullo, G. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 2013, 4, 1987.
[31]
Malard, L. M.; Mak, K. F.; Neto, A. H. C.; Peres, N. M. R.; Heinz, T. F. Observation of intra- and inter-band transitions in the transient optical response of graphene. New J. Phys. 2013, 15, 015009.
[32]
Song, J. C. W.; Rudner, M. S.; Marcus, C. M.; Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 2011, 11, 4688-4692.
[33]
Graham, M. W.; Shi, S. F.; Wang, Z. H.; Ralph, D. C.; Park, J.; McEuen, P. L. Transient absorption and photocurrent microscopy show that hot electron supercollisions describe the rate-limiting relaxation step in graphene. Nano Lett. 2013, 13, 5497-5502.
[34]
Gilbertson, S.; Dakovski, G. L.; Durakiewicz, T.; Zhu, J. X.; Dani, K. M.; Mohite, A. D.; Dattelbaum, A.; Rodriguez, G. Tracing ultrafast separation and coalescence of carrier distributions in graphene with time-resolved photoemission. J. Phys. Chem. Lett. 2012, 3, 64-68.
[35]
Gierz, I.; Petersen, J. C.; Mitrano, M.; Cacho, C.; Turcu, I. C. E.; Springate, E.; Stöhr, A.; Köhler, A.; Starke, U.; Cavalleri, A. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 2013, 12, 1119-1124.
[36]
Ulstrup, S.; Johannsen, J. C.; Crepaldi, A.; Cilento, F.; Zacchigna, M.; Cacho, C.; Chapman, R. T.; Springate, E.; Fromm, F.; Raidel, C. Ultrafast electron dynamics in epitaxial graphene investigated with time-and angle-resolved photoemission spectroscopy. J. Phys. Condens. Matter 2015, 27, 164206.
[37]
Song, J. C. W.; Reizer, M. Y.; Levitov, L. S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 2012, 109, 106602.
[38]
Song, J. C. W.; Tielrooij, K. J.; Koppens, F. H. L.; Levitov, L. S. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Phys. Rev. B 2013, 87, 155429.
[39]
Betz, A. C.; Jhang, S. H.; Pallecchi, E.; Ferreira, R.; Fève, G.; Berroir, J. M.; Plaçais, B. Supercollision cooling in undoped graphene. Nat. Phys. 2013, 9, 109-112.
[40]
Johannsen, J. C.; Ulstrup, S.; Cilento, F.; Crepaldi, A.; Zacchigna, M.; Cacho, C.; Turcu, I. C. E.; Springate, E.; Fromm, F.; Raidel, C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 2013, 111, 027403.
[41]
Graham, M. W.; Shi, S. F.; Ralph, D. C.; Park, J.; McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 2012, 9, 103-108.
[42]
Tielrooij, K. J.; Song, J. C. W.; Jensen, S. A.; Centeno, A.; Pesquera, A.; Elorza, A. Z.; Bonn, M.; Levitov, L. S.; Koppens, F. H. L. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 2013, 9, 248-252.
[43]
Alencar, T. V.; Silva, M. G.; Malard, L. M.; de Paula, A. M. Defect-induced supercollision cooling of photoexcited carriers in graphene. Nano Lett. 2014, 14, 5621-5624.
[44]
Limmer, T.; Feldmann, J.; Da Como, E. Carrier lifetime in exfoliated few-layer graphene determined from intersubband optical transitions. Phys. Rev. Lett. 2013, 110, 217406.
[45]
Ulstrup, S.; Johannsen, J. C.; Cilento, F.; Miwa, J. A.; Crepaldi, A.; Zacchigna, M.; Cacho, C.; Chapman, R.; Springate, E.; Mammadov, S. et al. Ultrafast dynamics of massive Dirac fermions in bilayer graphene. Phys. Rev. Lett. 2014, 112, 257401.
[46]
Gierz, I.; Mitrano, M.; Petersen, J. C.; Cacho, C.; Turcu, I. C. E.; Springate, E.; Stöhr, A.; Köhler, A.; Starke, U.; Cavalleri, A. Population inversion in monolayer and bilayer graphene. J. Phys. Condens. Matter 2015, 27, 164204.
[47]
Patel, H.; Havener, R. W.; Brown, L.; Liang, Y. F.; Yang, L.; Park, J.; Graham, M. W. Tunable optical excitations in twisted bilayer graphene form strongly bound excitons. Nano Lett. 2015, 15, 5932-5937.
[48]
Patel, H.; Huang, L. J.; Kim, C. J.; Park, J.; Graham, M. W. Stacking angle-tunable photoluminescence from interlayer exciton states in twisted bilayer graphene. Nat. Commun. 2019, 10, 1445.
[49]
Fukumoto, K.; Boutchich, M.; Arezki, H.; Sakurai, K.; Di Felice, D.; Dappe, Y. J.; Onda, K.; Koshihara, S. Y. Ultrafast electron dynamics in twisted graphene by femtosecond photoemission electron microscopy. Carbon 2017, 124, 49-56.
[50]
Yang, H. Z.; Feng, X. B.; Wang, Q.; Huang, H.; Chen, W.; Wee, A. T. S.; Ji, W. Giant two-photon absorption in bilayer graphene. Nano Lett. 2011, 11, 2622-2627.
[51]
Chu, Z. D.; He, W. Y.; He, L. Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer. Phys. Rev. B 2013, 87, 155419.
[52]
Ribeiro, H. B.; Sato, K.; Eliel, G. S. N.; De Souza, E. A. T.; Lu, C. C.; Chiu, P. W.; Saito, R.; Pimenta, M. A. Origin of van Hove singularities in twisted bilayer graphene. Carbon 2015, 90, 138-145.
[53]
Havener, R. W.; Zhuang, H. L.; Brown, L.; Hennig, R. G.; Park, J. Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene. Nano Lett. 2012, 12, 3162-3167.
[54]
Latychevskaia, T.; Escher, C.; Fink, H. W. Moiré structures in twisted bilayer graphene studied by transmission electron microscopy. Ultramicroscopy 2019, 197, 46-52.
[55]
Schmidt, H.; Rode, J. C.; Smirnov, D.; Haug, R. J. Superlattice structures in twisted bilayers of folded graphene. Nat. Commun. 2014, 5, 5742.
[56]
Eliel, G. S. N.; Moutinho, M. V. O.; Gadelha, A. C.; Righi, A.; Campos, L. C.; Ribeiro, H. B.; Chiu, P. W.; Watanabe, K.; Taniguchi, T.; Puech, P. et al. Intralayer and interlayer electron-phonon interactions in twisted graphene heterostructures. Nat. Commun. 2018, 9, 1221.
[57]
Vela, A.; Moutinho, M. V. O.; Culchac, F. J.; Venezuela, P.; Capaz, R. B. Electronic structure and optical properties of twisted multilayer graphene. Phys. Rev. B 2018, 98, 155135.
[58]
Caruso, F.; Novko, D; Draxl, C. Photoemission signatures of nonequilibrium carrier dynamics from first principles. Phys. Rev. B 2020, 101, 035128.
[59]
Tielrooij, K. J. Hesp, N. C.; Principi, A.; Lundeberg, M. B.; Pogna, E. A.; Banszerus, L.; Mics, Z.; Massicotte, M.; Schmidt, P.; Davydovskaya, D. et al. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling. Nat. Nanotech. 2018, 13, 41-46.
[60]
Venezuela, P.; Lazzeri, M; Mauri, F. Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 2011, 84, 035433.
[61]
Cocemasov, A. I.; Nika, D. L.; Balandin, A. A. Phonons in twisted bilayer graphene. Phys. Rev. B 2013, 88, 035428.
[62]
Lu, C. C.; Lin, Y. C.; Liu, Z.; Yeh, C. H.; Suenaga, K.; Chiu, P. W. Twisting bilayer graphene superlattices. ACS Nano 2013, 7, 2587-2594.
Nano Research
Pages 2797-2804
Cite this article:
Pogna EAA, Miao X, von Dreifus D, et al. Angle-tunable intersubband photoabsorption and enhanced photobleaching in twisted bilayer grapheme. Nano Research, 2021, 14(8): 2797-2804. https://doi.org/10.1007/s12274-021-3288-0
Topics:

961

Views

19

Downloads

8

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 15 July 2020
Revised: 06 December 2020
Accepted: 07 December 2020
Published: 16 January 2021
© The Author(s) 2021

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return