AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Visualizing light-induced dynamic structural transformations of Au clusters-based photocatalyst via in situ TEM

Bo Weng1,2Youhong Jiang1Hong-Gang Liao1( )Maarten B. J. Roeffaers2Feili Lai3Haowei Huang2( )Zichao Tang1( )
State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
Show Author Information

Graphical Abstract

Abstract

Ultrasmall gold (Au) clusters have been regarded as one of the prototypes materials for solar energy conversion due to their unique strong molecular-like light absorption properties. However, the light-induced aggregation of Au clusters into nanoparticles is one of the most important factors that restricts its application in photocatalysis. Although Au clusters aggregation has been widely demonstrated, the underlying mechanism for cluster fusion is still unclear due to the lack of experimental evidence. Herein, we report the direct observation of Au clusters on TiO2 nanosheets aggregating when used as visible light photocatalysts for the reduction of nitroaromatics. Through in situ high-resolution transmission electron microscopy (TEM), the coexistence of two fusion mechanisms of Au clusters on TiO2 under ultraviolet-visible (UV-Vis) light irradiation in air is identified, i.e., the migration and coalescence (MC) and Ostwald ripening (OR). Additionally, the correlation between the photostability of Au clusters and reaction atmospheres has been investigated, among which Au clusters have higher stability in an inert N2 atmosphere or vacuum than the oxidizing atmospheres (i.e., air and O2). These results indicate the inherent stability of Au cluster during photocatalysis, and instability comes from the consuming of ligand layer. This work not only discloses the underlying mechanism of Au cluster sintering but also provides guidelines for enhancing metal clusters-based photocatalysts stability.

Electronic Supplementary Material

Download File(s)
12274_2021_3289_MOESM1_ESM.pdf (2.4 MB)

References

[1]
Chen, S. W.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L. Gold nanoelectrodes of varied size: Transition to molecule-like charging. Science 1998, 280, 2098-2101.
[2]
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.
[3]
Yang, M. Q.; Shen, L.; Lu, Y. Y.; Chee, S. W.; Lu, X.; Chi, X.; Chen, Z. H.; Xu, Q. H.; Mirsaidov, U.; Ho, G. W. Disorder engineering in monolayer nanosheets enabling photothermic catalysis for full solar spectrum (250-2500 nm) harvesting. Angew. Chem., Int. Ed. 2019, 58, 3077-3081.
[4]
Yang, M. Q.; Gao, M. M.; Hong, M. H.; Ho, G. W. Visible-to-NIR photon harvesting: Progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv. Mater. 2018, 30, 1802894.
[5]
Pan, X. Y.; Zheng, J.; Zhang, L. X.; Yi, Z. G. Core-shell Au@SnO2 nanostructures supported on Na2Ti4O9 nanobelts as a highly active and deactivation-resistant catalyst toward selective nitroaromatics reduction. Inorg. Chem. 2019, 58, 11164-11171.
[6]
Weng, B.; Qi, M. Y.; Han, C.; Tang, Z. R.; Xu, Y. J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal. 2019, 9, 4642-4687.
[7]
Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901-1903.
[8]
White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev. 2009, 38, 481-494.
[9]
Besner, S.; Kabashin, A. V.; Winnik, F. M.; Meunier, M. Synthesis of size-tunable polymer-protected gold nanoparticles by femtosecond laser-based ablation and seed growth. J. Phys. Chem. C 2009, 113, 9526-9531.
[10]
Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096-2126.
[11]
Qian, H. F.; Zhu, M. Z.; Wu, Z. K.; Jin, R. C. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470-1479.
[12]
Jin, R. C.; Qian, H. F.; Wu, Z. K.; Zhu, Y.; Zhu, M. Z.; Mohanty, A.; Garg, N. Size focusing: A methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2903-2910.
[13]
Maity, P.; Xie, S. H.; Yamauchi, M.; Tsukuda, T. Stabilized gold clusters: From isolation toward controlled synthesis. Nanoscale 2012, 4, 4027-4037.
[14]
Liu, S. Q.; Xu, Y. J. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis. Sci. Rep. 2016, 6, 22742.
[15]
Habeeb Muhammed, M. A.; Pradeep, T. Au25@SiO2: Quantum clusters of gold embedded in silica. Small 2011, 7, 204-208.
[16]
Chen, Y. S.; Kamat, P. V. Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water. J. Am. Chem. Soc. 2014, 136, 6075-6082.
[17]
Weng, B.; Lu, K. Q.; Tang, Z. C.; Chen, H. M.; Xu, Y. J. Stabilizing ultrasmall au clusters for enhanced photoredox catalysis. Nat. Commun. 2018, 9, 1543.
[18]
Cui, X. F.; Wang, J.; Liu, B.; Ling, S.; Long, R.; Xiong, Y. J. Turning au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands. J. Am. Chem. Soc. 2018, 140, 16514-16520.
[19]
Xiao, F. X.; Zeng, Z. P.; Hsu, S. H.; Hung, S. F.; Chen, H. M.; Liu, B. Light-induced in situ transformation of metal clusters to metal nanocrystals for photocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 28105-28109.
[20]
Liu, L. C.; Zakharov, D. N.; Arenal, R.; Concepcion, P.; Stach, E. A.; Corma, A. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 2018, 9, 574.
[21]
Yu, C. L.; Li, G.; Kumar, S.; Kawasaki, H.; Jin, R. C. Stable Au25(SR)18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity. J. Phys. Chem. Lett. 2013, 4, 2847-2852.
[22]
Chong, H. B.; Gao, G. Q.; Chai, J. S.; Yang, S.; Rao, B.; Li, G.; Zhu, M. Z. Photoinduced oxidation catalysis by Au25-xAgx(SR)18 nanoclusters. ChemNanoMat 2018, 4, 482-486.
[23]
Weng, B.; Liu, S. Q.; Zhang, N.; Tang, Z. R.; Xu, Y. J. A simple yet efficient visible-light-driven CdS nanowires-carbon nanotube 1D-1D nanocomposite photocatalyst. J. Catal. 2014, 309, 146-155.
[24]
Linsebigler, A. L.; Lu, G. Q.; Yates, J. T., Jr Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-758.
[25]
Hansen, T. W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K. Sintering of catalytic nanoparticles: Particle migration or ostwald ripening? Acc. Chem. Res. 2013, 46, 1720-1730.
[26]
Weng, B.; Zhang, J. Y.; Shi, Z. F.; Tang, Z. C.; Zheng, L. S.; Xu, Y. J. Improving the photostability of ultrasmall au clusters via a combined strategy of surface engineering and interfacial modification. Langmuir 2019, 35, 5728-5736.
[27]
Wynblatt, P.; Gjostein, N. A. Supported metal crystallites. Prog. Solid State Chem. 1975, 9, 21-58.
Nano Research
Pages 2805-2809
Cite this article:
Weng B, Jiang Y, Liao H-G, et al. Visualizing light-induced dynamic structural transformations of Au clusters-based photocatalyst via in situ TEM. Nano Research, 2021, 14(8): 2805-2809. https://doi.org/10.1007/s12274-021-3289-z
Topics:

883

Views

30

Crossref

28

Web of Science

26

Scopus

3

CSCD

Altmetrics

Received: 15 October 2020
Revised: 29 November 2020
Accepted: 08 December 2020
Published: 05 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return