AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Semiconducting M2X (M = Cu, Ag, Au; X = S, Se, Te) monolayers: A broad range of band gaps and high carrier mobilities

Lei Gao1,2Yan-Fang Zhang1Shixuan Du1,3( )
Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
Faculty of Science, Kunming University of Science and Technology, Kunming 650000, China
CAS Key Laboratory of Vacuum Physics, Beijing 100049, China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional semiconductors (2DSCs) with appropriate band gaps and high mobilities are highly desired for future-generation electronic and optoelectronic applications. Here, using first-principles calculations, we report a novel class of 2DSCs, group-11-chalcogenide monolayers (M2X, M = Cu, Ag, Au; X = S, Se, Te), featuring with a broad range of energy band gaps and high carrier mobilities. Their energy band gaps extend from 0.49 to 3.76 eV at a hybrid density functional level, covering from ultraviolet-A, visible light to near-infrared region, which are crucial for broadband photoresponse. Significantly, the calculated room-temperature carrier mobilities of the M2X monolayers are as high as thousands of cm2·V-1·s-1. Particularly, the carrier mobilities of η-Au2Se and ε-Au2Te are up to 104 cm2·V-1·s-1, which is very attracitive for electronic devices. Benefitting from the broad range of energy band gaps and superior carrier mobilities, the group-11-chalcogenide M2X monolayers are promising candidates for future-generation nanoelectronics and optoelectronics.

Electronic Supplementary Material

Download File(s)
12274_2021_3294_MOESM1_ESM.pdf (2.3 MB)

References

[1]
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[2]
Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K. N.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236-6296.
[3]
Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116-130.
[4]
Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[5]
Zhang, S. L.; Guo, S. Y.; Chen, Z. F.; Wang, Y. L.; Gao, H. J.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. B. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982-1021.
[6]
Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72-133.
[7]
Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.
[8]
Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530-534.
[9]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[10]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[11]
Zhou, Q. H.; Chen, Q.; Tong, Y. L.; Wang, J. L. Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection. Angew. Chem., Int. Ed. 2016, 55, 11437-11441.
[12]
Qian, K.; Gao, L.; Chen, X. Y.; Li, H.; Zhang, S.; Zhang, X. L.; Zhu, S. Y.; Yan, J. H.; Bao, D. L.; Cao, L. et al. Air-stable monolayer Cu2Se exhibits a purely thermal structural phase transition. Adv. Mater. 2020, 32, 1908314.
[13]
Qian, K.; Gao, L.; Li, H.; Zhang, S.; Yan, J. H.; Liu, C.; Wang, J. O.; Qian, T.; Ding, H.; Zhang, Y. Y. et al. Epitaxial growth and air-stability of monolayer Cu2Te. Chin. Phys. B 2020, 29, 018104.
[14]
Guo, Y.; Wu, Q. S.; Li, Y. H.; Lu, N.; Mao, K. K.; Bai, Y. Z.; Zhao, J. J.; Wang, J. L.; Zeng, X. C. Copper(I) sulfide: A two-dimensional semiconductor with superior oxidation resistance and high carrier mobility. Nanoscale Horiz. 2019, 4, 223-230.
[15]
Wu, Q. S.; Xu, W. W.; Lin, D. D.; Wang, J. L.; Zeng, X. C. Two-dimensional gold sulfide monolayers with direct band gap and ultrahigh electron mobility. J. Phys. Chem. Lett. 2019, 10, 3773-3778.
[16]
Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091-6133.
[17]
Li, G.; Zhang, Y. Y.; Guo, H.; Huang, L.; Lu, H. L.; Lin, X.; Wang, Y. L.; Du, S. X.; Gao, H. J. Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds. Chem. Soc. Rev. 2018, 47, 6073-6100.
[18]
Zhou, J.; Zhen, X. F. A theoretical perspective of the enhanced photocatalytic properties achieved by forming tetragonal ZnS/ZnSe hetero-bilayer. Phys. Chem. Chem. Phys. 2018, 20, 9950-9956.
[19]
Wang, J. J.; Zhang, M.; Meng, J.; Li, Q. X.; Yang, J. L. Single- and few-layer BiOI as promising photocatalysts for solar water splitting. RSC Adv. 2017, 7, 24446-24452.
[20]
Bruzzone, S.; Fiori, G. Ab-initio simulations of deformation potentials and electron mobility in chemically modified graphene and two-dimensional hexagonal boron-nitride. Appl. Phys. Lett. 2011, 99, 222108.
[21]
Fiori, G.; Iannaccone, G. Multiscale modeling for graphene-based nanoscale transistors. Proc. IEEE 2013, 101, 1653-1669.
[22]
Takagi, S.; Toriumi, A.; Iwase, M.; Tango, H. On the universality of inversion layer mobility in Si MOSFET’s: Part I-effects of substrate impurity concentration. IEEE Trans. Electr. Dev. 1994, 41, 2357-2362.
[23]
Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.
[24]
Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.
[25]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
[26]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[27]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[28]
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207-8215.
[29]
Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.
[30]
Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5.
[31]
Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063-4066.
Nano Research
Pages 2826-2830
Cite this article:
Gao L, Zhang Y-F, Du S. Semiconducting M2X (M = Cu, Ag, Au; X = S, Se, Te) monolayers: A broad range of band gaps and high carrier mobilities. Nano Research, 2021, 14(8): 2826-2830. https://doi.org/10.1007/s12274-021-3294-2
Topics:

935

Views

33

Crossref

31

Web of Science

32

Scopus

2

CSCD

Altmetrics

Received: 10 October 2020
Revised: 09 December 2020
Accepted: 13 December 2020
Published: 05 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return