AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction

Long Yang1,2Guoqiang Li2Rongpeng Ma2Shuai Hou2Jinfa Chang2Mingbo Ruan2Wenbin Cai3Zhao Jin2( )Weilin Xu2Guiling Wang1( )Junjie Ge2Changpeng Liu2Wei Xing2( )
Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
Show Author Information

Graphical Abstract

Abstract

In this study, phosphorus doped graphene supported PtNiP nanocluster electrocatalyst (PtNiP/P-graphene) was successfully prepared via a simple hypophosphite-assisted co-reduction method. The improved anchoring force and increased anchoring sites of graphene support result from phosphorus doping as well as size-confined growth effect of NaH2PO2 leads to uniform dispersion of ultrafine PtNiP nanoclusters. Doped P also promotes the removal of CO-like intermediate by adjusting Pt electronic structure combining with alloyed Ni via electronic effects. As a result, the as-prepared PtNiP/P-graphene catalyst with more exposed active sites and optimized electronic structure of Pt alloy shows excellent electrocatalytic performances for methanol oxidation reaction (MOR) both in activity and durability in an acidic medium.

Electronic Supplementary Material

Download File(s)
12274_2021_3300_MOESM1_ESM.pdf (2.7 MB)

References

[1]
Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H. Q.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 2015, 8, 350-363.
[2]
Wang, W.; Chen, X. W.; Zhang, X.; Ye, J. Y.; Xue, F.; Zhen, C.; Liao, X. Y.; Li, H. Q.; Li, P. T.; Liu, M. C. et al. Quatermetallic Pt-based ultrathin nanowires intensified by Rh enable highly active and robust electrocatalysts for methanol oxidation. Nano Energy 2020, 71, 104623.
[3]
Long, X. Y.; Yin, P.; Lei, T.; Wang, K. C.; Zhan, Z. X. Methanol electro-oxidation on Cu@Pt/C core-shell catalyst derived from Cu-MOF. Appl. Catal. B-Environ. 2020, 260, 118187.
[4]
Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142-1147.
[5]
Zhang, Q.; Yue, F.; Xu, L. J.; Yao, C. X.; Priestley, R. D.; Hou, S. F. Paper-based porous graphene/single-walled carbon nanotubes supported Pt nanoparticles as freestanding catalyst for electro-oxidation of methanol. Appl. Catal. B-Environ. 2019, 257, 117886.
[6]
Chang, J. Q.; Song, L. T.; Xu, Y. Q.; Ma, Y. H.; Liang, C.; Jiang, W. Y.; Zhang, Y. Fishbone-like platinum-nickel nanowires as an efficient electrocatalyst for methanol oxidation. Nano Res. 2020, 13, 67-71.
[7]
Chen, G. J.; Dai, Z. F.; Sun, L.; Zhang, L.; Liu, S.; Bao, H. W.; Bi, J. L.; Yang, S. C.; Ma, F. Synergistic effects of platinum-cerium carbonate hydroxides-reduced graphene oxide on enhanced durability for methanol electro-oxidation. J. Mater. Chem. A 2019, 7, 6562-6571.
[8]
Bai, X. X.; Geng, J. R.; Zhao, S.; Li, H. X.; Li, F. J. Tunable hollow Pt@Ru dodecahedra via galvanic replacement for efficient methanol oxidation. ACS Appl. Mater. Interfaces 2020, 12, 23046-23050.
[9]
Li, J. H.; You, S. J.; Liu, M. Y.; Zhang, P.; Dai, Y.; Yu, Y.; Ren, N. Q.; Zou, J. L. ZIF-8-derived carbon-thin-layer protected WC/W24O68 micro-sized rods with enriched oxygen vacancies as efficient Pt co-catalysts for methanol oxidation and oxygen reduction. Appl. Catal. B-Environ. 2020, 265, 118574.
[10]
Yang, C. Z.; Jiang, Q. G.; Huang, H. J.; He, H. Y.; Yang, L.; Li, W. H. Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti3C2Tx MXene nanosheets for efficient methanol oxidation. ACS Appl. Mater. Interfaces 2020, 12, 23822-23830.
[11]
Fang, H.; Chen, Y. T.; Wen, M.; Wu, Q. S.; Zhu, Q. J. SnNi nanoneedles assembled 3D radial nanostructure loaded with SnNiPt nanoparticles: Towards enhanced electrocatalysis performance for methanol oxidation. Nano Res. 2017, 10, 3929-3940.
[12]
Zhang, W. Y.; Yao, Q. S.; Jiang, G. P.; Li, C.; Fu, Y. S.; Wang, X.; Yu, A. P.; Chen, Z. W. Molecular trapping strategy to stabilize subnanometric Pt Clusters for highly active electrocatalysis. ACS Catal. 2019, 9, 11603-11613.
[13]
Zhong, J. P.; Li, L. L.; Waqas, M.; Wang, X. Q.; Fan, Y. J.; Qi, J. H.; Yang, B.; Rong, C. Y.; Chen, W.; Sun, S. G. Deep eutectic solvent-assisted synthesis of highly efficient PtCu alloy nanoclusters on carbon nanotubes for methanol oxidation reaction. Electrochim. Acta 2019, 322, 134677.
[14]
Tang, H. R.; Hao, H.; Zhu, J. H.; Guan, X. P.; Qiu, B. J.; Li, Y. X. Single Pt-Pd bimetallic nanoparticle electrode: Controllable fabrication and unique electrocatalytic performance for the methanol oxidation reaction. Chem.Eur. J. 2019, 25, 4935-4940.
[15]
Ouyang, Y. R.; Cao, H. J.; Wu, H. J.; Wu, D. B.; Wang, F. Q.; Fan, X. J.; Yuan, W. Y.; He, M. X.; Zhang, L. Y.; Li, C. M. Tuning Pt-skinned PtAg nanotubes in nanoscales to efficiently modify electronic structure for boosting performance of methanol electrooxidation. Appl. Catal. B-Environ. 2020, 265, 118606.
[16]
Wang, H. F.; Zhang, K. F.; Qiu, J.; Wu, J.; Shao, J. W.; Wang, H. J.; Zhang, Y. J.; Han, J.; Zhang, Y.; Yan, L. F. Ternary PtFeCo alloys on graphene with high electrocatalytic activities for methanol oxidation. Nanoscale 2020, 12, 9824-9832.
[17]
Bi, J. L.; Gao, P. F.; Wang, B.; Yu, X. J.; Kong, C. C.; Xu, L.; Zhang, X. J.; Yang, S. C. Intrinsic insight on localized surface plasmon resonance enhanced methanol electro-oxidation over a Au@AgPt hollow urchin-like nanostructure. J. Mater. Chem. A 2020, 8, 6638-6646.
[18]
Shan, A. X.; Huang, S. Y.; Zhao, H. F.; Jiang, W. G.; Teng, X. A.; Huang, Y. C.; Chen, C. P.; Wang, R. M.; Lau, W. M. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction. Nano Res. 2020, 13, 3088-3097.
[19]
Lu, Q. Q.; Sun, L. T.; Zhao, X.; Huang, J. S.; Han, C.; Yang, X. R. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res. 2018, 11, 2562-2572.
[20]
Fu, X. Y.; Wan, C. Z.; Zhang, A. X.; Zhao, Z. P.; Huyan, H. X.; Pan, X. Q.; Du, S. J.; Duan, X. F.; Huang, Y. Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. Nano Res. 2020, 13, 1472-1478.
[21]
Zhao, F. L.; Yuan, Q.; Luo, B.; Li, C. Z.; Yang, F.; Yang, X. T.; Zhou, Z. Y. Surface composition-tunable octahedral PtCu nanoalloys advance the electrocatalytic performance on methanol and ethanol oxidation. Sci. China Mater. 2019, 62, 1877-1887.
[22]
Yin, S. L.; Kumar, R. D.; Yu, H. J.; Li, C. J.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. Pt@Mesoporous PtRu yolk-shell nanostructured electrocatalyst for methanol oxidation reaction. ACS Sustain. Chem. Eng. 2019, 7, 14867-14873.
[23]
Zhang, J. M.; Qu, X. M.; Han, Y.; Shen, L. F.; Yin, S. H.; Li, G.; Jiang, Y. X.; Sun, S. G. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Appl. Catal. B-Environ. 2020, 263, 118345.
[24]
Li, Z. J.; Jiang, X.; Wang, X. R.; Hu, J. R.; Liu, Y. Y.; Fu, G. T.; Tang, Y. W. Concave PtCo nanocrosses for methanol oxidation reaction. Appl. Catal. B-Environ. 2020, 277, 119135.
[25]
Tang, M.; Luo, S. P.; Wang, K.; Du, H. Y.; Sriphathoorat, R.; Shen, P. K. Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Res. 2018, 11, 4786-4795.
[26]
Huang, K.; Yan, Y. C.; Yu, X. G.; Zhang, H.; Yang, D. R. Graphene coupled with Pt cubic nanoparticles for high performance, air-stable graphene-silicon solar cells. Nano Energy 2017, 32, 225-231.
[27]
Lee, D.; Kim, Y.; Kwon, Y.; Lee, J.; Kim, T. W.; Noh, Y.; Kim, W. B.; Seo, M. H.; Kim, K.; Kim, H. J. Boosting the electrocatalytic glycerol oxidation performance with highly-dispersed Pt nanoclusters loaded on 3D graphene-like microporous carbon. Appl. Catal. B-Environ. 2019, 245, 555-568.
[28]
Sun, Y.; Zhou, Y. J.; Liu, Y.; Wu, Q. Y.; Zhu, M. M.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite. Nano Res. 2020, 13, 2683-2690.
[29]
Park, C.; Lee, E.; Lee, G.; Tak, Y. Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells. Appl. Catal. B-Environ. 2020, 268, 118414.
[30]
Zhao, L.; Sui, X. L.; Li, J. Z.; Zhang, J. J.; Zhang, L. M.; Huang, G. S.; Wang, Z. B. Supramolecular assembly promoted synthesis of three-dimensional nitrogen doped graphene frameworks as efficient electrocatalyst for oxygen reduction reaction and methanol electrooxidation. Appl. Catal. B-Environ. 2018, 231, 224-233.
[31]
Que, L. K.; Zhang, L.; Wu, C.; Zhang, Y.; Pei, C. H.; Nie, F. D. Pt-decorated graphene network materials for supercapacitors with enhanced power density. Carbon 2019, 145, 281-289.
[32]
Li, H. Y.; Zhang, L. H.; Li, L.; Wu, C. W.; Huo, Y. J.; Chen, Y.; Liu, X. J.; Ke, X. X.; Luo, J.; Van Tendeloo, G. Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis. Nano Res. 2019, 12, 33-39.
[33]
Haidari, M. M.; Kim, H.; Kim, J. H.; Park, M.; Lee, H.; Choi, J. S. Doping effect in graphene-graphene oxide interlayer. Sci. Rep. 2020, 10, 8258.
[34]
Kim, G.; Kim, S. S.; Jeon, J.; Yoon, S. I.; Hong, S.; Cho, Y. J.; Misra, A.; Ozdemir, S.; Yin, J.; Ghazaryan, D. et al. Planar and van der Waals heterostructures for vertical tunnelling single electron transistors. Nat. Commun. 2019, 10, 230.
[35]
Dyck, O.; Zhang, C.; Rack, P. D.; Fowlkes, J. D.; Sumpter, B.; Lupini, A. R.; Kalinin, S. V.; Jesse, S. Electron-beam introduction of heteroatomic Pt-Si structures in graphene. Carbon 2020, 161, 750-757.
[36]
Gorle, D. B.; Kulandainathan, M. A. One-pot synthesis of highly efficient graphene based three-dimensional hybrids as catalyst supporting materials for electro-oxidation of liquid fuels. J. Mater. Chem. A 2017, 5, 15273-15286.
[37]
Ali, A.; Shen, P. K. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction. J. Mater. Chem. A 2019, 7, 22189-22217.
[38]
Agnoli, S.; Favaro, M. Doping graphene with boron: A review of synthesis methods, physicochemical characterization, and emerging applications. J. Mater. Chem. A 2016, 4, 5002-5025.
[39]
Tian, Y.; Mei, R.; Xue, D. Z.; Zhang, X.; Peng, W. Enhanced electrocatalytic hydrogen evolution in graphene via defect engineering and heteroatoms co-doping. Electrochim. Acta 2016, 219, 781-789.
[40]
Wang, C. N.; Luo, S. Y.; Yang, Y. Y.; Ren, D. S.; Yu, X. Defect-rich graphene architecture induced by nitrogen and phosphorus dual doping for high-performance supercapacitors. Energy Technol. 2020, 8, 1900685.
[41]
Chen, Z. Q.; Wu, H. B.; Li, J.; Wang, Y. F.; Guo, W.; Cao, C. B.; Chen, Z. Defect enhanced CoP/reduced graphene oxide electrocatalytic hydrogen production with Pt-like activity. Appl. Catal. B-Environ. 2020, 265, 118576.
[42]
Yu, X.; Kang, Y. B.; Park, H. S. Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon 2016, 101, 49-56.
[43]
Fan, X.; Xu, H.; Zuo, S. S.; Liang, Z. P.; Yang, S. H.; Chen, Y. Preparation and supercapacitive properties of phosphorus-doped reduced graphene oxide hydrogel. Electrochim. Acta 2020, 330, 135207.
[44]
Zhang, C.; Wang, X.; Liang, Q. F.; Liu, X. Z.; Weng, Q. H.; Liu, J. W.; Yang, Y. J.; Dai, Z. H.; Ding, K. J.; Bando, Y. et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054-2060.
[45]
Wen, Y. Y.; Wang, B.; Huang, C. C.; Wang, L. Z.; Hulicova-Jurcakova D. Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem.—Eur. J. 2015, 21, 80-85.
[46]
Zhan, J.; Tan, D. C. L.; Prakitritanon, S.; Lin, M.; Sato, H. Extremely low catalyst loading for electroless deposition on a non-conductive surface by a treatment for reduced graphene oxide. Chem. Commun. 2017, 53, 9198-9201.
[47]
Hu, K. M.; Xue, Z. Y.; Liu, Y. Q.; Song, P. H.; Le, X. H.; Peng, B.; Yan, H.; Di, Z. F.; Xie, J.; Lin, L. W. et al. Corrigendum to “Probing built-in stress effect on the defect density of stretched monolayer graphene membranes” [Carbon 152 (2019) 233-240]. Carbon 2019, 155, 756.
[48]
Ma, Y. Y.; Wang, H.; Lv, W. Z.; Ji, S.; Pollet, B. G.; Li, S. X.; Wang, R. F. Amorphous PtNiP particle networks of different particle sizes for the electro-oxidation of hydrazine. RSC Adv. 2015, 5, 68655-68661.
[49]
Yang, P. P.; Yuan, X. L.; Hu, H. C.; Liu, Y. L.; Zheng, H. W.; Yang, D.; Chen, L.; Cao, M. H.; Xu, Y.; Min, Y. L. et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 2018, 28, 1704774.
[50]
Ma, Y. J.; Wang, R. F.; Wang, H.; Linkov, V.; Ji, S. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction. Phys. Chem. Chem. Phys. 2014, 16, 3593-3602.
[51]
Ma, Y. J.; Li, H.; Wang, H.; Ji, S.; Linkov, V.; Wang, R. F. Ultrafine amorphous PtNiP nanoparticles supported on carbon as efficiency electrocatalyst for oxygen reduction reaction. J. Power Sources 2014, 259, 87-91.
[52]
Kuang, D.; Xu, L. Y.; Liu, L.; Hu, W. B.; Wu, Y. T. Graphene-nickel composites. Appl. Surf. Sci. 2013, 273, 484-490.
[53]
Miao, X. G.; Yin, R. Y.; Ge, X. L.; Li, Z. Q.; Yin, L. W. Ni2P@carbon core-shell nanoparticle-arched 3D interconnected graphene aerogel architectures as anodes for high-performance sodium-ion batteries. Small 2017, 13, 1702138.
[54]
Yuan, H.; Liu, J.; Jiao, Q. Z.; Li, Y. J.; Liu, X. F.; Shi, D. X.; Wu, Q.; Zhao, Y.; Li, H. S. Sandwich-like octahedral cobalt disulfide/reduced graphene oxide as an efficient Pt-free electrocatalyst for high-performance dye-sensitized solar cells. Carbon 2017, 119, 225-234.
[55]
Ji, X. Q.; Zhang, R.; Shi, X. F.; Asiri, A. M.; Zheng, B. Z.; Sun, X. P. Fabrication of hierarchical CoP nanosheet@microwire arrays via space-confined phosphidation toward high-efficiency water oxidation electrocatalysis under alkaline conditions. Nanoscale 2018, 10, 7941-7945.
[56]
Li, C. J.; Xu, Y.; Yang, D. D.; Qian, X. Q.; Chai, X. J.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Boosting electrocatalytic activities of Pt-based mesoporous nanoparticles for overall water splitting by a facile Ni, P co-incorporation strategy. ACS Sustain. Chem. Eng. 2019, 7, 9709-9716.
[57]
Huang, H.; Wang, H.; Hu, W. X.; Lv, W. J.; Ye, W. C. Exploring the role of nickel in the formation of amorphous Pt-based metallic alloys for methanol electro-oxidation with significant enhancement. Electrochem. commun. 2017, 82, 107-111.
[58]
Chen, Y. F.; Yang, Y. F.; Fu, G. T.; Xu, L.; Sun, D. M.; Lee, J. M.; Tang, Y. W. Core-shell CuPd@Pd tetrahedra with concave structures and Pd-enriched surface boost formic acid oxidation. J. Mater. Chem. A 2018, 6, 10632-10638.
[59]
Wu, G.; Li, L.; Xu, B. Q. Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation. Electrochim. Acta 2004, 50, 1-10.
[60]
Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells. Energy Environ. Sci. 2014, 7, 1628-1632.
[61]
Sun, Y. R.; Du, C. Y.; Han, G. K.; Qu, Y. T.; Du, L.; Wang, Y. J.; Chen, G. Y.; Gao, Y. Z.; Yin, G. P. Boron, nitrogen co-doped graphene: A superior electrocatalyst support and enhancing mechanism for methanol electrooxidation. Electrochim. Acta 2016, 212, 313-321.
[62]
Hsing, I. M.; Wang, X.; Leng, Y. J. Electrochemical impedance studies of methanol electro-oxidation on Pt/C thin film electrode. J. Electrochem. Soc. 2002, 149, A615-A621.
Nano Research
Pages 2853-2860
Cite this article:
Yang L, Li G, Ma R, et al. Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Research, 2021, 14(8): 2853-2860. https://doi.org/10.1007/s12274-021-3300-8
Topics:

762

Views

45

Crossref

47

Web of Science

47

Scopus

5

CSCD

Altmetrics

Received: 13 October 2020
Revised: 08 December 2020
Accepted: 17 December 2020
Published: 23 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return