Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Engineering porous architectures in multicomponent PdCuBP mesoporous nanospheres for electrocatalytic ethanol oxidation

Hao Lv2,§Yaru Wang1,§Dongdong Xu1()Ben Liu1,2()
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
College of Chemistry, Sichuan University, Chengdu 610064, China

§ Hao Lv and Yaru Wang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Porous features of mesoporous metal nanocrystals are critically important for their applications in catalysis, sorption, and biomedicine and bioimaging. However, precisely engineering porous architectures of mesoporous metals is still highly challenging. Herein, we report a facile soft-templating strategy to precisely engineer porous architectures of multicomponent PdCuBP mesoporous nanospheres (MSs) by using the surfactants with different amphiphilic features. Three kinds of MSs with distinct porous architectures, including three-dimensional (3D) opened/interconnected dendritic mesopores (dMSs), one-dimensional (1D) cylindered mesopores (cMSs), and zero-dimensional (0D) spherical mesopores (sMSs), are prepared. This surfactant-templating method is generally extended to regulate elemental compositions of multicomponent MSs. The resultant Pd-based MSs have been evaluated as the electrocatalysts for ethanol oxidation reaction (EOR). Our results show that quaternary PdCuBP dMSs display remarkably high catalytic activity and better stability for electrocatalytic EOR, compared to those of multicomponent MSs with other porous architectures and less elemental compositions. Mechanism studies reveal that PdCuBP dMSs combine multiple structural and compositional advantages, which kinetically accelerate the electron/mass transfers and also improve the tolerances to poisoning intermediates. We believe that the porous architecture engineering in mesoporous metal electrocatalysts will present a new way to design highly efficient electrocatalysts with desired porous systems and explore their relations towards (electro)catalysis.

Electronic Supplementary Material

Download File(s)
12274_2021_3301_MOESM1_ESM.pdf (3.1 MB)

References

[1]
Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999-12044.
[2]
Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409-6455.
[3]
Chung, D. Y.; Yoo, J. M.; Sung, Y. E. Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts. Adv. Mater. 2018, 30, 1704123.
[4]
Rodrigues, T. S.; da Silva, A. G. M.; Camargo, P. H. C. Nanocatalysis by noble metal nanoparticles: Controlled synthesis for the optimization and understanding of activities. J. Mater. Chem. A 2019, 7, 5857-5874.
[5]
Shao, Q.; Wang, P. T.; Huang, X. Q. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv. Funct. Mater. 2019, 29, 1806419.
[6]
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
[7]
Du, R.; Jin, X. Y.; Hübner, R.; Fan, X. L.; Hu, Y.; Eychmüller, A. Engineering self-supported noble metal foams toward electrocatalysis and beyond. Adv. Energy Mater. 2020, 10, 1901945.
[8]
Fang, Z. W.; Li, P. P.; Yu, G. H. Gel electrocatalysts: An emerging material platform for electrochemical energy conversion. Adv. Mater. 2020, 32, 2003191.
[9]
Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810-11899.
[10]
Wang, Y. Z.; Zhang, Z. Y.; Mao, Y. C.; Wang, X. D. Two-dimensional nonlayered materials for electrocatalysis. Energy Environ. Sci. 2020, 13, 3993-4016.
[11]
Huang, W. J.; Kang, X. L.; Xu, C.; Zhou, J. H.; Deng, J.; Li, Y. G.; Cheng, S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv. Mater. 2018, 30, 1706962.
[12]
Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.
[13]
Lv, H.; Xu, D. D.; Sun, L. Z.; Henzie, J.; Suib, S. L.; Yamauchi, Y.; Liu, B. Ternary palladium-boron-phosphorus alloy mesoporous nanospheres for highly efficient electrocatalysis. ACS Nano 2019, 13, 12052-12061.
[14]
Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.
[15]
Lv, H.; Sun, L. Z.; Xu, D. D.; Ma, Y. H.; Liu, B. When ternary PdCuP alloys meet ultrathin nanowires: Synergic boosting of catalytic performance in ethanol electrooxidation. Appl. Catal. B Environ. 2019, 253, 271-277.
[16]
Lv, H.; Sun, L. Z.; Xu, D. D.; Liu, B. Ternary metal-metalloid-nonmetal alloy nanowires: A novel electrocatalyst for highly efficient ethanol oxidation electrocatalysis. Sci. Bull. 2020, 65, 1823-1831.
[17]
Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Ultrafine Pt-based nanowires for advanced catalysis. Adv. Funct. Mater. 2020, 30, 2000793.
[18]
Li, Y. J.; Guo, S. J. Noble metal-based 1D and 2D electrocatalytic nanomaterials: Recent progress, challenges and perspectives. Nano Today 2019, 28, 100774.
[19]
Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28-32.
[20]
Wang, T. J.; Li, F. M.; Huang, H.; Yin, S. W.; Chen, P.; Jin, P. J.; Chen, Y. Porous Pd-PdO nanotubes for methanol electrooxidation. Adv. Funct. Mater. 2020, 30, 2000534.
[21]
Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 2018, 140, 16159-16167.
[22]
Li, C. L.; Iqbal, M.; Jiang, B.; Wang, Z. L.; Kim, J.; Nanjundan, A. K.; Whitten, A. E.; Wood, K.; Yamauchi, Y. Pore-tuning to boost the electrocatalytic activity of polymeric micelle-templated mesoporous Pd nanoparticles. Chem. Sci. 2019, 10, 4054-4061.
[23]
Jiang, B.; Li, C. L.; Dag, Ö.; Abe, H.; Takei, T.; Imai, T.; Hossain, S. A.; Islam, T.; Wood, K.; Henzie, J. et al. Mesoporous metallic rhodium nanoparticles. Nat. Commun. 2017, 8, 15581.
[24]
Chen, H.; Liang, X.; Liu, Y. P.; Ai, X.; Asefa, T.; Zou, X. X. Active site engineering in porous electrocatalysts. Adv. Mater. 2020, 32, 2002435.
[25]
Ding, J.; Liu, Z.; Liu, X. R.; Liu, B.; Liu, J.; Deng, Y. D.; Han, X. P.; Hu, W. B.; Zhong, C. Tunable periodically ordered mesoporosity in palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation. Angew. Chem., Int. Ed. 2020, 59, 5092-5101.
[26]
Zu, L. H.; Zhang, W.; Qu, L. B.; Liu, L. L.; Li, W.; Yu, A. B.; Zhao, D. Y. Mesoporous materials for electrochemical energy storage and conversion. Adv. Energy Mater. 2020, 10, 2002152.
[27]
Zhang, J. T.; Li, C. M. Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem. Soc. Rev. 2012, 41, 7016-7031.
[28]
Yamauchi, Y.; Kuroda, K. Rational design of mesoporous metals and related nanomaterials by a soft-template approach. Chem.—Asian. J. 2008, 3, 664-676.
[29]
Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.
[30]
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[31]
Yang, X. Y.; Lu, P. H.; Yu, L.; Pan, P. P.; Elzatahry, A. A.; Alghamdi, A.; Luo, W.; Cheng, X. W.; Deng, Y. H. An efficient emulsion-induced interface assembly approach for rational synthesis of mesoporous carbon spheres with versatile architectures. Adv. Funct. Mater. 2020, 30, 2002488.
[32]
Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073-7080.
[33]
Fang, J. X.; Zhang, L. L.; Li, J.; Lu, L.; Ma, C. S.; Cheng, S. D.; Li, Z. Y.; Xiong, Q. H.; You, H. J. A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures. Nat. Commun. 2018, 9, 521.
[34]
Huang, X. Q.; Li, Y. J.; Chen, Y.; Zhou, E. B.; Xu, Y. X.; Zhou, H. L.; Duan, X. F.; Huang, Y. Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. Angew. Chem., Int. Ed. 2013, 52, 2520-2524.
[35]
Wei, Q. L.; Xiong, F. Y.; Tan, S. S.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Q. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300.
[36]
Han, L.; Miyasaka, K.; Terasaki, O.; Che, S. N. Evolution of packing parameters in the structural changes of silica mesoporous crystals: Cage-type, 2D cylindrical, bicontinuous diamond and gyroid, and lamellar. J. Am. Chem. Soc. 2011, 133, 11524-11533.
[37]
Guo, Y.; Chen, S.; Li, Y.; Wang, Y. W.; Zou, H. B.; Tong, X. L. Pore structure dependent activity and durability of mesoporous rhodium nanoparticles towards the methanol oxidation reaction. Chem. Commun. 2020, 56, 4448-4451.
[38]
Kärger, J.; Valiullin, R. Mass transfer in mesoporous materials: The benefit of microscopic diffusion measurement. Chem. Soc. Rev. 2013, 42, 4172-4197.
[39]
Xu, Y.; Yu, S. S.; Ren, T. L.; Li, C. J.; Yin, S. L.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. A quaternary metal-metalloid-nonmetal electrocatalyst: B, P-co-doping into PdRu nanospine assemblies boosts the electrocatalytic capability toward formic acid oxidation. J. Mater. Chem. A 2020, 8, 2424-2429.
[40]
Lv, H.; Sun, L. Z.; Xu, D. D.; Henzie, J.; Yamauchi, Y.; Liu, B. Mesoporous palladium-boron alloy nanospheres. J. Mater. Chem. A 2019, 7, 24877-24883.
[41]
Vo Doan, T. T.; Wang, J. B.; Poon, K. C.; Tan, D. C. L.; Khezri, B.; Webster, R. D.; Su, H. B.; Sato, H. Theoretical modelling and facile synthesis of a highly active boron-doped palladium catalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 6842-6847.
[42]
Lv, H.; Sun, L. Z.; Zou, L.; Xu, D. D.; Yao, H. Q.; Liu, B. Size-dependent synthesis and catalytic activities of trimetallic PdAgCu mesoporous nanospheres in ethanol electrooxidation. Chem. Sci. 2019, 10, 1986-1993.
[43]
Lv, H.; Lopes, A.; Xu, D. D.; Liu, B. Multimetallic hollow mesoporous nanospheres with synergistically structural and compositional effects for highly efficient ethanol electrooxidation. ACS Cent. Sci. 2018, 4, 1412-1419.
Nano Research
Pages 3274-3281
Cite this article:
Lv H, Wang Y, Xu D, et al. Engineering porous architectures in multicomponent PdCuBP mesoporous nanospheres for electrocatalytic ethanol oxidation. Nano Research, 2021, 14(9): 3274-3281. https://doi.org/10.1007/s12274-021-3301-7
Topics:
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return