Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Fluorescein angiography (FA) is a standard imaging modality for evaluating vascular abnormalities in retina-related diseases, which is recognized as the major cause of vision loss. Long-term and real-time fundus angiography is of great importance in preclinical research, nevertheless remaining big challenges up to present. In this study, we demonstrate that long-term fluorescence imaging of retinal vessels is enabled through a kind of fluorescent nanoagents, which is made of small-sized (hydrodynamic diameter: ~ 3 nm) silicon nanoparticles (SiNPs) featuring strong fluorescence, robust photostability, lengthened blood residency and negligible toxicity. In particular, the presented SiNPs-based nanoagents are capable of imaging retinal capillaries in ~ 10 min, which is around 10-fold longer than that (~ 1 min) of fluorescein sodium (FS, known as the most widely used contrast agents for FA in clinic). Taking cynomolgus macaques as non-human primate-animal model, we further demonstrate the feasibility of real-time diagnosis of retinal diseases (e.g., age-related macular degeneration (AMD)) through dynamic monitoring of vascular dysfunction.
Zhang, K.; Zhang, L. F.; Weinreb, R. N. Ophthalmic drug discovery: Novel targets and mechanisms for retinal diseases and glaucoma. Nat. Rev. Drug. Discov. 2012, 11, 541–559.
Kim, D. Y.; Fingler, J.; Zawadzki, R. J.; Park, S. S.; Morse, L. S.; Schwartz, D. M.; Fraser, S. E.; Werner, J. S. Optical imaging of the chorioretinal vasculature in the living human eye. Proc. Natl. Acad. Sci. USA 2013, 110, 14354–14359.
Stanga, P. E.; Lim, J. I.; Hamilton, P. Indocyanine green angiography in chorioretinal diseases: Indications and interpretation: An evidence-based update. Ophthalmology 2003, 110, 15–21.
Antonelli, A.; Sfara, C.; Magnani, M. Intravascular contrast agents in diagnostic applications: Use of red blood cells to improve the lifespan and efficacy of blood pool contrast agents. Nano Res. 2017, 10, 731–766.
Pearlman, J. D.; Laham, R. J.; Post, M.; Leiner, T.; Simons, M. Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis. Curr. Pharm. Des. 2002, 8, 1467–1496.
Huang, J. G.; Li, J. C.; Lyu, Y.; Miao, Q. Q.; Pu, K. Y. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 2019, 18, 1133–1143.
Miao, Q. Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H. W.; Liu, X. G.; Jokerst, J. V.; Pu, K. Y. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 2017, 35, 1102–1110.
Cursiefen, C.; Chen, L.; Saint-Geniez, M.; Hamrah, P.; Jin, Y. P.; Rashid, S.; Pytowski, B.; Persaud, K.; Wu, Y.; Streilein, J. W. et al. Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc. Natl. Acad. Sci. USA 2006, 103, 11405–11410.
Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 2018, 13, 941–946.
Takahashi, K.; Muraoka, K.; Kishi, S.; Shimizu, K. Formation of retinochoroidal collaterals in central retinal vein occlusion. Am. J. Ophthalmol. 1998, 126, 91–99.
Wolfensberger, T. J.; Herbort, C. P. Indocyanine green angiographic features in ocular sarcoidosis. Ophthalmology 1999, 106, 285–289.
Aydin, P.; Akova, Y. A.; Kadayifçilar, S. Anterior segment indocyanine green angiography in scleral inflammation. Eye 2000, 14, 211–215.
Nicholson, B.; Noble, J.; Forooghian, F.; Meyerle, C. Central serous chorioretinopathy: Update on pathophysiology and treatment. Surv. Ophthalmol. 2013, 58, 103–126.
Shinojima, A.; Kawamura, A.; Mori, R.; Yuzawa, M. Morphologic features of focal choroidal excavation on spectral domain optical coherence tomography with simultaneous angiography. Retina 2014, 34, 1407–1414.
Yannuzzi, L. A. A perspective on the treatment of aphakic cystoid macular edema. Surv. Ophthalmol. 1984, 28, 540–553.
Fardeau, C.; Lee, C. P. L.; Merle-Béral, H.; Cassoux, N.; Bodaghi, B.; Davi, F.; Lehoang, P. Retinal fluorescein, indocyanine green angiography, and optic coherence tomography in non-hodgkin primary intraocular lymphoma. Am. J. Ophthalmol. 2009, 147, 886–894.
Antcliff, R. J.; Stanford, M. R.; Chauhan, D. S.; Graham, E. M.; Spalton, D. J.; Shilling, J. S.; Ffytche, T. J.; Marshall, J. Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis. Ophthalmology 2000, 107, 593–599.
Spaide, R. F.; Yannuzzi, L. A.; Sisco, L. J. Chronic cystoid macular edema and predictors of visual acuity. Ophthalmic Surg. 1993, 24, 262– 267.
Jia, Y. L.; Bailey, S. T.; Hwang, T. S.; McClintic, S. M.; Gao, S. S.; Pennesi, M. E.; Flaxel, C. J.; Lauer, A. K.; Wilson, D. J.; Hornegger, J. et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc. Natl. Acad. Sci. USA 2015, 112, 2395–2402.
Weng, Y. H.; Ma, X. W.; Che, J.; Li, C.; Liu, J.; Chen, S. Z.; Wang, Y. Q.; Gan, Y. L.; Chen, H.; Hu, Z. B. et al. Nanomicelle-assisted targeted ocular delivery with enhanced antiinflammatory efficacy in vivo. Adv. Sci. 2018, 5, 1700455.
Wang, Y. F.; Liu, C. H.; Ji, T. J.; Mehta, M.; Wang, W. P.; Marino, E.; Chen, J.; Kohane, D. S. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat. Commun. 2019, 10, 804.
Shen, J. K.; Kim, J.; Tzeng, S. Y.; Ding, K.; Hafiz, Z.; Long, D.; Wang, J. X.; Green, J. J.; Campochiaro, P. A. Suprachoroidal gene transfer with nonviral nanoparticles. Sci. Adv. 2020, 6, eaba1606.
Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.
Yao, J.; Yang, M.; Duan, Y. X. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178.
Kwon, J.; Jun, S. W.; Choi, S. I.; Mao, X.; Kim, J.; Koh, E. K.; Kim, Y. H.; Kim, S. K.; Hwang, D. Y.; Kim, C. S. et al. FeSe quantum dots for in vivo multiphoton biomedical imaging. Sci. Adv. 2019, 5, eaay0044.
Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem. , Int. Ed. 2014, 53, 12086– 12090.
Zhou, L.; Wang, R.; Yao, C.; Li, X. M.; Wang, C. L.; Zhang, X. Y.; Xu, C. J.; Zeng, A. J.; Zhao, D. Y.; Zhang, F. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat. Commun. 2015, 6, 6938.
Su, Y. Y.; Ji, X. Y.; He, Y. Water-dispersible fluorescent silicon nanoparticles and their optical applications. Adv. Mater. 2016, 28, 10567–10574.
Peng, F.; Su, Y. Y.; Zhong, Y. L.; Fan, C. H.; Lee, S. T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 2014, 47, 612–623.
Zhong, Y. L.; Song, B.; Shen, X. B.; Guo, D. X.; He, Y. Fluorescein sodium ligand-modified silicon nanoparticles produce ultrahigh fluorescence with robust pH- and photo-stability. Chem. Commun. 2019, 55, 365–368.
Cui, M. Y.; Liu, S. M.; Song, B.; Guo, D. X.; Wang, J. H.; Hu, G. Y.; Su, Y. Y.; He, Y. Fluorescent silicon nanorods-based nanotheranostic agents for multimodal imaging-guided photothermal therapy. Nano-Micro Lett. 2019, 11, 73.
Wang, J. H.; Song, B.; Tang, J. L.; Hu, G. Y.; Wang, J. Y.; Cui, M. Y.; He, Y. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Res. 2020, 13, 1614– 1619.
Guo, D. X.; Ji, X. Y.; Peng, F.; Zhong, Y. L.; Chu, B. B.; Su, Y. Y.; He, Y. Photostable and biocompatible fluorescent silicon nanoparticles for imaging-guided co-delivery of siRNA and doxorubicin to drug-resistant cancer cells. Nano-Micro Lett. 2019, 11, 27.
Ji, X. Y.; Guo, D. X.; Song, B.; Wu, S. C.; Chu, B. B.; Su, Y. Y.; He, Y. Traditional Chinese medicine molecule-assisted chemical synthesis of fluorescent anti-cancer silicon nanoparticles. Nano Res. 2018, 11, 5629–5641.
Zhai, X.; Song, B.; Chu, B. B.; Su, Y. Y.; Wang, H. Y.; He, Y. Highly fluorescent, photostable, and biocompatible silicon theranostic nanoprobes against Staphylococcus aureus infections. Nano Res. 2018, 11, 6417–6427.
Tang, M. M.; Ji, X. Y.; Xu, H.; Zhang, L.; Jiang, A. R.; Song, B.; Su, Y. Y.; He, Y. Photostable and biocompatible fluorescent silicon nanoparticles-based theranostic probes for simultaneous imaging and treatment of ocular neovascularization. Anal. Chem. 2018, 90, 8188–8195.
Zhang, L.; Ji, X. Y.; Su, Y. Y.; Zhai, X.; Xu, H.; Song, B.; Jiang, A. R.; Guo, D. X.; He, Y. Fluorescent silicon nanoparticles-based nanotheranostic agents for rapid diagnosis and treatment of bacteria-induced keratitis. Nano Res. 2020, 14, 52–58.
Lambert, V.; Lecomte, J.; Hansen, S.; Blacher, S.; Gonzalez, M. L. A.; Struman, I.; Sounni, N. E.; Rozet, E.; de Tullio, P.; Foidart, J. M. et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat. Protoc. 2013, 8, 2197–2211.
Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W.; Felsher, D. W.; Dai, H. J. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem., Int. Ed. 2009, 48, 7668–7672.
Laginha, K. M.; Verwoert, S.; Charrois, G. J. R.; Allen, T. M. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin. Cancer. Res. 2005, 11, 6944–6949.
Nakayama-Ratchford, N.; Bangsaruntip, S.; Sun, X. M.; Welsher, K.; Dai, H. J. Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: Supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc. 2007, 129, 2448–2449.
Park, J.; Hammond, P. T. Multilayer transfer printing for polyelectrolyte multilayer patterning: Direct transfer of layer-by-layer assembled micropatterned thin films. Adv. Mater. 2004, 16, 520–525.
Luo, L.; Zhang, X. H.; Hirano, Y.; Tyagi, P.; Barabas, P.; Uehara, H.; Miya, T. R.; Singh, N.; Archer, B.; Qazi, Y. et al. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano 2013, 7, 3264–3275.
Haarhaus, M.; Brandenburg, V.; Kalantar-Zadeh, K.; Stenvinkel, P.; Magnusson, P. Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol. 2017, 13, 429– 442.
Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. W. In vivo quantum-dot toxicity assessment. Small 2010, 6, 138–144.
Yong, K. T.; Law, W. C.; Hu, R.; Ye, L.; Liu, L. W.; Swihart, M. T.; Prasad, P. N. Nanotoxicity assessment of quantum dots: From cellular to primate studies. Chem. Soc. Rev. 2013, 42, 1236–1250.
Ghosh, J. G.; Nguyen, A. A.; Bigelow, C. E.; Poor, S.; Qiu, Y. B.; Rangaswamy, N.; Ornberg, R.; Jackson, B.; Mak, H.; Ezell, T. et al. Long-acting protein drugs for the treatment of ocular diseases. Nat. Commun. 2017, 8, 14837.
Kulkarni, A. D.; Kuppermann, B. D. Wet age-related macular degeneration. Adv. Drug. Deliv. Rev. 2005, 57, 1994–2009.
Goody, R. J.; Hu, W. Z.; Shafiee, A.; Struharik, M.; Bartels, S.; López, F. J.; Lawrence, M. S. Optimization of laser-induced choroidal neovascularization in African green monkeys. Exp. Eye Res. 2011, 92, 464–472.
Sidman, R. L.; Li, J. X.; Lawrence, M.; Hu, W. Z.; Musso, G. F.; Giordano, R. J.; Cardó-Vila, M.; Pasqualini, R.; Arap, W. The peptidomimetic Vasotide targets two retinal VEGF receptors and reduces pathological angiogenesis in murine and nonhuman primate models of retinal disease. Sci. Transl. Med. 2015, 7, 309ra165.
Ye, L.; Yong, K. T.; Liu, L. W.; Roy, I.; Hu, R.; Zhu, J.; Cai, H. X.; Law, W. C.; Liu, J. W.; Wang, K. et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nanotechnol. 2012, 7, 453–458.
Chen, F.; Madajewski, B.; Ma, K.; Zanoni, D. K.; Stambuk, H.; Turker, M. Z.; Monette, S.; Zhang, L.; Yoo, B.; Chen, P. M. et al. Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Sci. Adv. 2019, 5, eaax5208.
Munson, M. C.; Plewman, D. L.; Baumer, K. M.; Henning, R.; Zahler, C. T.; Kietzman, A. T.; Beard, A. A.; Mukai, S.; Diller, L.; Hamerly, G. et al. Autonomous early detection of eye disease in childhood photographs. Sci. Adv. 2019, 5, eaax6363.