AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Long-term fundus fluorescence angiography and real-time diagnosis of retinal diseases in non-human primate-animal models

Miaomiao Tang1,§Lu Zhang1,§Bin Song1,§Xiaoyuan Ji1Chenyu Wang1Houyu Wang1Hua Xu2Yuanyuan Su1,3Yao He1( )
Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 China
Department of Ophthalmology Children's Hospital of Soochow University Soochow University Suzhou 215123 China
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center Sun Yat-Sen Memorial HospitalSun Yat-Sen University Guangzhou 510120 China

§ Miaomiao Tang, Lu Zhang, and Bin Song contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Fluorescein angiography (FA) is a standard imaging modality for evaluating vascular abnormalities in retina-related diseases, which is recognized as the major cause of vision loss. Long-term and real-time fundus angiography is of great importance in preclinical research, nevertheless remaining big challenges up to present. In this study, we demonstrate that long-term fluorescence imaging of retinal vessels is enabled through a kind of fluorescent nanoagents, which is made of small-sized (hydrodynamic diameter: ~ 3 nm) silicon nanoparticles (SiNPs) featuring strong fluorescence, robust photostability, lengthened blood residency and negligible toxicity. In particular, the presented SiNPs-based nanoagents are capable of imaging retinal capillaries in ~ 10 min, which is around 10-fold longer than that (~ 1 min) of fluorescein sodium (FS, known as the most widely used contrast agents for FA in clinic). Taking cynomolgus macaques as non-human primate-animal model, we further demonstrate the feasibility of real-time diagnosis of retinal diseases (e.g., age-related macular degeneration (AMD)) through dynamic monitoring of vascular dysfunction.

Electronic Supplementary Material

Video
12274_2021_3302_MOESM2_ESM.mp4
12274_2021_3302_MOESM3_ESM.mp4
12274_2021_3302_MOESM4_ESM.mp4
Download File(s)
12274_2021_3302_MOESM1_ESM.pdf (3.1 MB)

References

1

Zhang, K.; Zhang, L. F.; Weinreb, R. N. Ophthalmic drug discovery: Novel targets and mechanisms for retinal diseases and glaucoma. Nat. Rev. Drug. Discov. 2012, 11, 541–559.

2

Kim, D. Y.; Fingler, J.; Zawadzki, R. J.; Park, S. S.; Morse, L. S.; Schwartz, D. M.; Fraser, S. E.; Werner, J. S. Optical imaging of the chorioretinal vasculature in the living human eye. Proc. Natl. Acad. Sci. USA 2013, 110, 14354–14359.

3

Stanga, P. E.; Lim, J. I.; Hamilton, P. Indocyanine green angiography in chorioretinal diseases: Indications and interpretation: An evidence-based update. Ophthalmology 2003, 110, 15–21.

4

Antonelli, A.; Sfara, C.; Magnani, M. Intravascular contrast agents in diagnostic applications: Use of red blood cells to improve the lifespan and efficacy of blood pool contrast agents. Nano Res. 2017, 10, 731–766.

5

Pearlman, J. D.; Laham, R. J.; Post, M.; Leiner, T.; Simons, M. Medical imaging techniques in the evaluation of strategies for therapeutic angiogenesis. Curr. Pharm. Des. 2002, 8, 1467–1496.

6

Huang, J. G.; Li, J. C.; Lyu, Y.; Miao, Q. Q.; Pu, K. Y. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 2019, 18, 1133–1143.

7

Miao, Q. Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H. W.; Liu, X. G.; Jokerst, J. V.; Pu, K. Y. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 2017, 35, 1102–1110.

8

Cursiefen, C.; Chen, L.; Saint-Geniez, M.; Hamrah, P.; Jin, Y. P.; Rashid, S.; Pytowski, B.; Persaud, K.; Wu, Y.; Streilein, J. W. et al. Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc. Natl. Acad. Sci. USA 2006, 103, 11405–11410.

9

Fan, Y.; Wang, P. Y.; Lu, Y. Q.; Wang, R.; Zhou, L.; Zheng, X. L.; Li, X. M.; Piper, J. A.; Zhang, F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 2018, 13, 941–946.

10

Takahashi, K.; Muraoka, K.; Kishi, S.; Shimizu, K. Formation of retinochoroidal collaterals in central retinal vein occlusion. Am. J. Ophthalmol. 1998, 126, 91–99.

11

Wolfensberger, T. J.; Herbort, C. P. Indocyanine green angiographic features in ocular sarcoidosis. Ophthalmology 1999, 106, 285–289.

12

Aydin, P.; Akova, Y. A.; Kadayifçilar, S. Anterior segment indocyanine green angiography in scleral inflammation. Eye 2000, 14, 211–215.

13

Nicholson, B.; Noble, J.; Forooghian, F.; Meyerle, C. Central serous chorioretinopathy: Update on pathophysiology and treatment. Surv. Ophthalmol. 2013, 58, 103–126.

14

Shinojima, A.; Kawamura, A.; Mori, R.; Yuzawa, M. Morphologic features of focal choroidal excavation on spectral domain optical coherence tomography with simultaneous angiography. Retina 2014, 34, 1407–1414.

15

Yannuzzi, L. A. A perspective on the treatment of aphakic cystoid macular edema. Surv. Ophthalmol. 1984, 28, 540–553.

16

Fardeau, C.; Lee, C. P. L.; Merle-Béral, H.; Cassoux, N.; Bodaghi, B.; Davi, F.; Lehoang, P. Retinal fluorescein, indocyanine green angiography, and optic coherence tomography in non-hodgkin primary intraocular lymphoma. Am. J. Ophthalmol. 2009, 147, 886–894.

17

Antcliff, R. J.; Stanford, M. R.; Chauhan, D. S.; Graham, E. M.; Spalton, D. J.; Shilling, J. S.; Ffytche, T. J.; Marshall, J. Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis. Ophthalmology 2000, 107, 593–599.

18

Spaide, R. F.; Yannuzzi, L. A.; Sisco, L. J. Chronic cystoid macular edema and predictors of visual acuity. Ophthalmic Surg. 1993, 24, 262– 267.

19

Jia, Y. L.; Bailey, S. T.; Hwang, T. S.; McClintic, S. M.; Gao, S. S.; Pennesi, M. E.; Flaxel, C. J.; Lauer, A. K.; Wilson, D. J.; Hornegger, J. et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc. Natl. Acad. Sci. USA 2015, 112, 2395–2402.

20

Weng, Y. H.; Ma, X. W.; Che, J.; Li, C.; Liu, J.; Chen, S. Z.; Wang, Y. Q.; Gan, Y. L.; Chen, H.; Hu, Z. B. et al. Nanomicelle-assisted targeted ocular delivery with enhanced antiinflammatory efficacy in vivo. Adv. Sci. 2018, 5, 1700455.

21

Wang, Y. F.; Liu, C. H.; Ji, T. J.; Mehta, M.; Wang, W. P.; Marino, E.; Chen, J.; Kohane, D. S. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat. Commun. 2019, 10, 804.

22

Shen, J. K.; Kim, J.; Tzeng, S. Y.; Ding, K.; Hafiz, Z.; Long, D.; Wang, J. X.; Green, J. J.; Campochiaro, P. A. Suprachoroidal gene transfer with nonviral nanoparticles. Sci. Adv. 2020, 6, eaba1606.

23

Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.

24

Yao, J.; Yang, M.; Duan, Y. X. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178.

25

Kwon, J.; Jun, S. W.; Choi, S. I.; Mao, X.; Kim, J.; Koh, E. K.; Kim, Y. H.; Kim, S. K.; Hwang, D. Y.; Kim, C. S. et al. FeSe quantum dots for in vivo multiphoton biomedical imaging. Sci. Adv. 2019, 5, eaay0044.

26

Wang, R.; Li, X. M.; Zhou, L.; Zhang, F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem. , Int. Ed. 2014, 53, 12086– 12090.

27

Zhou, L.; Wang, R.; Yao, C.; Li, X. M.; Wang, C. L.; Zhang, X. Y.; Xu, C. J.; Zeng, A. J.; Zhao, D. Y.; Zhang, F. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat. Commun. 2015, 6, 6938.

28

Su, Y. Y.; Ji, X. Y.; He, Y. Water-dispersible fluorescent silicon nanoparticles and their optical applications. Adv. Mater. 2016, 28, 10567–10574.

29

Peng, F.; Su, Y. Y.; Zhong, Y. L.; Fan, C. H.; Lee, S. T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 2014, 47, 612–623.

30

Zhong, Y. L.; Song, B.; Shen, X. B.; Guo, D. X.; He, Y. Fluorescein sodium ligand-modified silicon nanoparticles produce ultrahigh fluorescence with robust pH- and photo-stability. Chem. Commun. 2019, 55, 365–368.

31

Cui, M. Y.; Liu, S. M.; Song, B.; Guo, D. X.; Wang, J. H.; Hu, G. Y.; Su, Y. Y.; He, Y. Fluorescent silicon nanorods-based nanotheranostic agents for multimodal imaging-guided photothermal therapy. Nano-Micro Lett. 2019, 11, 73.

32

Wang, J. H.; Song, B.; Tang, J. L.; Hu, G. Y.; Wang, J. Y.; Cui, M. Y.; He, Y. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Res. 2020, 13, 1614– 1619.

33

Guo, D. X.; Ji, X. Y.; Peng, F.; Zhong, Y. L.; Chu, B. B.; Su, Y. Y.; He, Y. Photostable and biocompatible fluorescent silicon nanoparticles for imaging-guided co-delivery of siRNA and doxorubicin to drug-resistant cancer cells. Nano-Micro Lett. 2019, 11, 27.

34

Ji, X. Y.; Guo, D. X.; Song, B.; Wu, S. C.; Chu, B. B.; Su, Y. Y.; He, Y. Traditional Chinese medicine molecule-assisted chemical synthesis of fluorescent anti-cancer silicon nanoparticles. Nano Res. 2018, 11, 5629–5641.

35

Zhai, X.; Song, B.; Chu, B. B.; Su, Y. Y.; Wang, H. Y.; He, Y. Highly fluorescent, photostable, and biocompatible silicon theranostic nanoprobes against Staphylococcus aureus infections. Nano Res. 2018, 11, 6417–6427.

36

Tang, M. M.; Ji, X. Y.; Xu, H.; Zhang, L.; Jiang, A. R.; Song, B.; Su, Y. Y.; He, Y. Photostable and biocompatible fluorescent silicon nanoparticles-based theranostic probes for simultaneous imaging and treatment of ocular neovascularization. Anal. Chem. 2018, 90, 8188–8195.

37

Zhang, L.; Ji, X. Y.; Su, Y. Y.; Zhai, X.; Xu, H.; Song, B.; Jiang, A. R.; Guo, D. X.; He, Y. Fluorescent silicon nanoparticles-based nanotheranostic agents for rapid diagnosis and treatment of bacteria-induced keratitis. Nano Res. 2020, 14, 52–58.

38

Lambert, V.; Lecomte, J.; Hansen, S.; Blacher, S.; Gonzalez, M. L. A.; Struman, I.; Sounni, N. E.; Rozet, E.; de Tullio, P.; Foidart, J. M. et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat. Protoc. 2013, 8, 2197–2211.

39

Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W.; Felsher, D. W.; Dai, H. J. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem., Int. Ed. 2009, 48, 7668–7672.

40

Laginha, K. M.; Verwoert, S.; Charrois, G. J. R.; Allen, T. M. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin. Cancer. Res. 2005, 11, 6944–6949.

41

Nakayama-Ratchford, N.; Bangsaruntip, S.; Sun, X. M.; Welsher, K.; Dai, H. J. Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: Supramolecular conjugates with pH-dependent absorbance and fluorescence. J. Am. Chem. Soc. 2007, 129, 2448–2449.

42

Park, J.; Hammond, P. T. Multilayer transfer printing for polyelectrolyte multilayer patterning: Direct transfer of layer-by-layer assembled micropatterned thin films. Adv. Mater. 2004, 16, 520–525.

43

Luo, L.; Zhang, X. H.; Hirano, Y.; Tyagi, P.; Barabas, P.; Uehara, H.; Miya, T. R.; Singh, N.; Archer, B.; Qazi, Y. et al. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano 2013, 7, 3264–3275.

44

Haarhaus, M.; Brandenburg, V.; Kalantar-Zadeh, K.; Stenvinkel, P.; Magnusson, P. Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol. 2017, 13, 429– 442.

45

Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. W. In vivo quantum-dot toxicity assessment. Small 2010, 6, 138–144.

46

Yong, K. T.; Law, W. C.; Hu, R.; Ye, L.; Liu, L. W.; Swihart, M. T.; Prasad, P. N. Nanotoxicity assessment of quantum dots: From cellular to primate studies. Chem. Soc. Rev. 2013, 42, 1236–1250.

47

Ghosh, J. G.; Nguyen, A. A.; Bigelow, C. E.; Poor, S.; Qiu, Y. B.; Rangaswamy, N.; Ornberg, R.; Jackson, B.; Mak, H.; Ezell, T. et al. Long-acting protein drugs for the treatment of ocular diseases. Nat. Commun. 2017, 8, 14837.

48

Kulkarni, A. D.; Kuppermann, B. D. Wet age-related macular degeneration. Adv. Drug. Deliv. Rev. 2005, 57, 1994–2009.

49

Goody, R. J.; Hu, W. Z.; Shafiee, A.; Struharik, M.; Bartels, S.; López, F. J.; Lawrence, M. S. Optimization of laser-induced choroidal neovascularization in African green monkeys. Exp. Eye Res. 2011, 92, 464–472.

50

Sidman, R. L.; Li, J. X.; Lawrence, M.; Hu, W. Z.; Musso, G. F.; Giordano, R. J.; Cardó-Vila, M.; Pasqualini, R.; Arap, W. The peptidomimetic Vasotide targets two retinal VEGF receptors and reduces pathological angiogenesis in murine and nonhuman primate models of retinal disease. Sci. Transl. Med. 2015, 7, 309ra165.

51

Ye, L.; Yong, K. T.; Liu, L. W.; Roy, I.; Hu, R.; Zhu, J.; Cai, H. X.; Law, W. C.; Liu, J. W.; Wang, K. et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nanotechnol. 2012, 7, 453–458.

52

Chen, F.; Madajewski, B.; Ma, K.; Zanoni, D. K.; Stambuk, H.; Turker, M. Z.; Monette, S.; Zhang, L.; Yoo, B.; Chen, P. M. et al. Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Sci. Adv. 2019, 5, eaax5208.

53

Munson, M. C.; Plewman, D. L.; Baumer, K. M.; Henning, R.; Zahler, C. T.; Kietzman, A. T.; Beard, A. A.; Mukai, S.; Diller, L.; Hamerly, G. et al. Autonomous early detection of eye disease in childhood photographs. Sci. Adv. 2019, 5, eaax6363.

Nano Research
Pages 3840-3847
Cite this article:
Tang M, Zhang L, Song B, et al. Long-term fundus fluorescence angiography and real-time diagnosis of retinal diseases in non-human primate-animal models. Nano Research, 2021, 14(11): 3840-3847. https://doi.org/10.1007/s12274-021-3302-6
Topics:

914

Views

10

Crossref

9

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 15 October 2020
Revised: 13 December 2020
Accepted: 19 December 2020
Published: 22 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return