AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Redox-active nanoparticles for inflammatory bowel disease

Qinjuan Ren1,§Si Sun1,§Xiao-Dong Zhang1,2( )
Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China

§ Qinjuan Ren and Si Sun contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Homeostasis of gut microbiota is extremely essential for maintaining nutrient metabolism and regulating immunological function. The increasing evidence suggests that inflammatory bowel disease (IBD) is strongly associated with dysregulation of gut microbiota. During activated inflammation, excessive reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced by inflammatory cells play a detrimental role in regulating IBD and gut microbiota. ROS/RNS cause damage to the surrounding tissues, including nutrient absorption disorders, intestinal dysmotility and barrier dysfunction. Meanwhile, ROS/RNS provide terminal electron receptors for anaerobic respiration and support the bloom of facultative anaerobes, eventually causing gut microbiota dysbiosis. Redox-active nanoparticles (NPs) with catalytic properties or enzyme-like activities can effectively scavenge ROS/RNS, and selectively target inflamed sites via ultrasmall size-mediated enhanced permeation and retention (EPR) effect, showing great potential to regulate IBD and maintain the homeostasis of gut microbiota. In addition, the widespread application of NPs in commercial products has increased their accumulation in healthy organisms, and the biological effects on normal microbiota resulting from long-term exposure of NPs to gastrointestinal tract also need attention.

References

[1]
Hooper, L. V.; Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 2010, 10, 159-169.
[2]
Kamada, N.; Seo, S. U.; Chen, G. Y.; Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013, 13, 321-335.
[3]
Hamer, H. M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F. J.; Brummer, R. J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008, 27, 104-119.
[4]
Trompette, A.; Gollwitzer, E. S.; Yadava, K.; Sichelstiel, A. K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L. P.; Harris, N. L. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20, 159-166.
[5]
Gill, N.; Wlodarska, M.; Finlay, B. B. The future of mucosal immunology: Studying an integrated system-wide organ. Nat. Immunol. 2010, 11, 558-560.
[6]
Cani, P. D. Gut microbiota-at the intersection of everything? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 321-322.
[7]
Schroeder, B. O.; Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016, 22, 1079-1089.
[8]
Fujimura, K. E.; Sitarik, A. R.; Havstad, S.; Lin, D. L.; Levan, S.; Fadrosh, D.; Panzer, A. R.; LaMere, B.; Rackaityte, E.; Lukacs, N. W. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 2016, 22, 1187-1191.
[9]
Dinan, T. G.; Cryan, J. F. Gut-brain axis in 2016: Brain-gut-microbiota axis-mood, metabolism and behaviour. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 69-70.
[10]
Attar, N. Microbiome: Good for the gut, good for the brain. Nat. Rev. Microbiol. 2016, 14, 269.
[11]
Benakis, C.; Brea, D.; Caballero, S.; Faraco, G.; Moore, J.; Murphy, M.; Sita, G.; Racchumi, G.; Ling, L. L.; Pamer, E. G. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat. Med. 2016, 22, 516-523.
[12]
Liu, Z. G.; Dai, X. S.; Zhang, H. B.; Shi, R. J.; Hui, Y.; Jin, X.; Zhang, W. T.; Wang, L. F.; Wang, Q. X.; Wang, D. N. et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat. Commun. 2020, 11, 855.
[13]
Wu, Y. W.; Briley, K.; Tao, X. F. Nanoparticle-based imaging of inflammatory bowel disease. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2016, 8, 300-315.
[14]
Shivashankar, R.; Lichtenstein, G. R. Mimics of inflammatory bowel disease. Inflamm. Bowel Dis. 2018, 24, 2315-2321.
[15]
Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 205-217.
[16]
De Souza, H. S. P.; Fiocchi, C.; Iliopoulos, D. The IBD interactome: An integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 739-750.
[17]
Ananthakrishnan, A. N.; Bernstein, C. N.; Iliopoulos, D.; Macpherson, A.; Neurath, M. F.; Ali, R. A. R.; Vavricka, S. R.; Fiocchi, C. Environmental triggers in IBD: A review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 39-49.
[18]
Cleynen, I.; Vermeire, S. The genetic architecture of inflammatory bowel disease: Past, present and future. Curr. Opin. Gastroenterol. 2015, 31, 456-463.
[19]
McGovern, D. P. B.; Kugathasan, S.; Cho, J. H. Genetics of inflammatory bowel diseases. Gastroenterology 2015, 149, 1163-1176.
[20]
Abreu, M. T.; Taylor, K. D.; Lin, Y. C.; Hang, T.; Gaiennie, J.; Landers, C. J.; Vasiliauskas, E. A.; Kam, L. Y.; Rojany, M.; Papadakis, K. A. et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 2002, 123, 679-688.
[21]
Lee, S. H.; Kwon, J. E.; Cho, M. L. Immunological pathogenesis of inflammatory bowel disease. Intest. Res. 2018, 16, 26-42.
[22]
Sommer, F.; Rühlemann, M. C.; Bang, C.; Höppner, M.; Rehman, A.; Kaleta, C.; Schmitt-Kopplin, P.; Dempfle, A.; Weidinger, S.; Ellinghaus, E. et al. Microbiomarkers in inflammatory bowel diseases: Caveats come with caviar. Gut 2017, 66, 1734-1738.
[23]
Stojanov, S.; Berlec, A.; Štrukelj, B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020, 8, 1715.
[24]
Mukhopadhya, I.; Hansen, R.; El-Omar, E. M.; Hold, G. L. IBD-what role do Proteobacteria play? Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 219-230.
[25]
Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L. G.; Gratadoux, J. J.; Blugeon, S.; Bridonneau, C.; Furet, J. P.; Corthier, G. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731-16736.
[26]
Sun, M. M.; Wu, W.; Liu, Z. J.; Cong, Y. Z. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 2017, 52, 1-8.
[27]
Knaus, U. G. ROS signaling in complex systems: The gut. In Oxidative Stress. Sies, H., Ed.; Elsevier: New York, 2020; pp 695-712.
[28]
Albenberg, L.; Esipova, T. V.; Judge, C. P.; Bittinger, K.; Chen, J.; Laughlin, A.; Grunberg, S.; Baldassano, R. N.; Lewis, J. D.; Li, H. Z. et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 2014, 147, 1055-1063.E8.
[29]
Campbell, E. L.; Colgan, S. P. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 106-120.
[30]
Tian, T.; Wang, Z. L.; Zhang, J. H. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid. Med. Cell. Longev. 2017, 2017, 4535194.
[31]
Lopez, C. A.; Miller, B. M.; Rivera-Chávez, F.; Velazquez, E. M.; Byndloss, M. X.; Chávez-Arroyo, A.; Lokken, K. L.; Tsolis, R. M.; Winter, S. E.; Bäumler, A. J. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 2016, 353, 1249-1253.
[32]
Winter, S. E.; Lopez, C. A.; Bäumler, A. J. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep. 2013, 14, 319-327.
[33]
Fischbach, M. A.; Sonnenburg, J. L. Eating for two: How metabolism establishes interspecies interactions in the gut. Cell Host Microbe 2011, 10, 336-347.
[34]
Winter, S. E.; Thiennimitr, P.; Winter, M. G.; Butler, B. P.; Huseby, D. L.; Crawford, R. W.; Russell, J. M.; Bevins, C. L.; Adams, L. G.; Tsolis, R. M. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 2010, 467, 426-429.
[35]
Ni, J.; Wu, G. D.; Albenberg, L.; Tomov, V. T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 573-584.
[36]
Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechonol. 2015, 33, 941-951.
[37]
Chao, Y.; Chen, Q.; Liu, Z. Smart injectable hydrogels for cancer immunotherapy. Adv. Funct. Mater. 2020, 30, 1902785.
[38]
Mu, X. Y.; Wang, J. Y.; Li, Y. H.; Xu, F. J.; Long, W.; Ouyang, L. F.; Liu, H. L.; Jing, Y. Q.; Wang, J. Y.; Dai, H. T. et al. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano 2019, 13, 1870-1884.
[39]
Hou, X. C.; Zhang, X. F.; Zhao, W. Y.; Zeng, C. X.; Deng, B. B.; McComb, D. W.; Du, S.; Zhang, C. X.; Li, W. Q.; Dong, Y. Z. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 2020, 15, 41-46.
[40]
Wang, J. Y.; Cui, X. J.; Li, H. B.; Xiao, J. P.; Yang, J.; Mu, X. Y.; Liu, H. X.; Sun, Y. M.; Xue, X. H.; Liu, C. L. et al. Highly efficient catalytic scavenging of oxygen free radicals with graphene-encapsulated metal nanoshields. Nano Res. 2018, 11, 2821-2835.
[41]
Xing, R. J.; Bhirde, A. A.; Wang, S. J.; Sun, X. L.; Liu, G.; Hou, Y. L.; Chen, X. Y. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013, 6, 1-9.
[42]
Liu, H. L.; Hong, G. S.; Luo, Z. T.; Chen, J. C.; Chang, J. L.; Gong, M.; He, H.; Yang, J.; Yuan, X.; Li, L. L. et al. Atomic-precision gold clusters for NIR-II imaging. Adv. Mater. 2019, 31, 1901015.
[43]
Wang, Y. Q.; Li, L. L.; Zhao, W. B.; Dou, Y.; An, H. J.; Tao, H.; Xu, X. Q.; Jia, Y.; Lu, S.; Zhang, J. X. et al. Targeted therapy of atherosclerosis by a broad-spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory activity. ACS Nano 2018, 12, 8943-8960.
[44]
Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S. C.; Wang, X. Y.; Wu, J. J.; Li, S. R.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927-2933.
[45]
Zhang, S. F.; Cho, W. J.; Jin, A. T.; Kok, L. Y.; Shi, Y. H.; Heller, D. E.; Lee, Y. A. L.; Zhou, Y. X.; Xie, X.; Korzenik, J. R. et al. Heparin-coated albumin nanoparticles for drug combination in targeting inflamed intestine. Adv. Healthc. Mater. 2020, 9, 2000536.
[46]
Lamprecht, A. Selective nanoparticle adhesion can enhance colitis therapy. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 311-312.
[47]
Lamprecht, A. Nanomedicines in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 195-204.
[48]
Xiao, B.; Laroui, H.; Viennois, E.; Ayyadurai, S.; Charania, M. A.; Zhang, Y. C.; Zhang, Z.; Baker, M. T.; Zhang, B. Y.; Gewirtz, A. T. et al. Nanoparticles with surface antibody against CD98 and carrying CD98 small interfering RNA reduce colitis in mice. Gastroenterology 2014, 146, 1289-1300.E19.
[49]
Xiao, B.; Laroui, H.; Ayyadurai, S.; Viennois, E.; Charania, M. A.; Zhang, Y. C.; Merlin, D. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials 2013, 34, 7471-7482.
[50]
Hu, B.; Yu, S. J.; Shi, C.; Gu, J.; Shao, Y.; Chen, Q.; Li, Y. Q.; Mezzenga, R. Amyloid-polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis. ACS Nano 2020, 14, 2760-2776.
[51]
Qiu, K. Y.; Durham, P. G.; Anselmo, A. C. Inorganic nanoparticles and the microbiome. Nano Res. 2018, 11, 4936-4954.
[52]
Hirst, S. M.; Karakoti, A. S.; Tyler, R. D.; Sriranganathan, N.; Seal, S.; Reilly, C. M. Anti-inflammatory properties of cerium oxide nanoparticles. Small 2009, 5, 2848-2856.
[53]
Zhen, W. Y.; Liu, Y.; Lin, L.; Bai, J.; Jia, X. D.; Tian, H. Y.; Jiang, X. BSA-IrO2: Catalase-like nanoparticles with high photothermal conversion efficiency and a high X-ray absorption coefficient for anti-inflammation and antitumor theranostics. Angew. Chem., Int. Ed. 2018, 130, 10466-10470.
[54]
Sharpe, E.; Andreescu, D.; Andreescu, S. Artificial nanoparticle antioxidants. In Oxidative Stress: Diagnostics, Prevention, and Therapy. Andreescu, S.; Hepel, M., Eds.; ACS Publications: New York, 2011; pp 235-253.
[55]
Tirosh, B.; Khatib, N.; Barenholz, Y.; Nissan, A.; Rubinstein, A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol. Pharm. 2009, 6, 1083-1091.
[56]
Maurer-Jones, M. A.; Lin, Y. S.; Haynes, C. L. Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 2010, 4, 3363-3373.
[57]
Kang, T.; Kim, Y. G.; Kim, D.; Hyeon, T. Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications. Coord. Chem. Rev. 2020, 403, 213092.
[58]
Frederickson, C. J.; Koh, J. Y.; Bush, A. I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005, 6, 449-462.
[59]
Sensi, S. L.; Paoletti, P.; Bush, A. I.; Sekler, I. Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 2009, 10, 780-791.
[60]
Seo, H. M.; Kim, Y. H.; Lee, J. H.; Kim, J. S.; Park, Y. M.; Lee, J. Y. Serum zinc status and its association with allergic sensitization: The fifth Korea national health and nutrition examination survey. Sci. Rep. 2017, 7, 12637.
[61]
Eide, D. J. The oxidative stress of zinc deficiency. Metallomics 2011, 3, 1124-1129.
[62]
Eide, D. J. Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 2009, 284, 18565-18569.
[63]
Oteiza, P. I. Zinc and the modulation of redox homeostasis. Free Radic. Biol. Med. 2012, 53, 1748-1759.
[64]
Li, J. Q.; Chen, H. Q.; Wang, B.; Cai, C. X.; Yang, X.; Chai, Z. F.; Feng, W. Y. ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci. Rep. 2017, 7, 43126.
[65]
AbouZaid, O. A. R.; El-Sogheer, H. M.; El-Sonbaty, S. M. Evaluation of protective and therapeutic role of zinc oxide nanoparticles and aloin on dextran sulfate-induced ulcerative colitis in rats. Benha Vet. Med. J. 2016, 30, 208-218.
[66]
Gubernatorova, E. O.; Liu, X. B.; Othman, A.; Muraoka, W. T.; Koroleva, E. P.; Andreescu, S.; Tumanov, A. V. Europium-doped cerium oxide nanoparticles limit reactive oxygen species formation and ameliorate intestinal ischemia-reperfusion injury. Adv. Healthc. Mater. 2017, 6, 1700176.
[67]
Hussein, R. M.; Saleh, H. Promising therapeutic effect of gold nanoparticles against dinitrobenzene sulfonic acid-induced colitis in rats. Nanomedicine 2018, 13, 1657-1679.
[68]
Abdelmegid, A. M.; Abdo, F. K.; Ahmed, F. E.; Kattaia, A. A. A. Therapeutic effect of gold nanoparticles on DSS-induced ulcerative colitis in mice with reference to interleukin-17 expression. Sci. Rep. 2019, 9, 10176.
[69]
Zhu, S. Q.; Jiang, X. M.; Boudreau, M. D.; Feng, G. X.; Miao, Y.; Dong, S. Y.; Wu, H. H.; Zeng, M. Y.; Yin, J. J. Orally administered gold nanoparticles protect against colitis by attenuating Toll-like receptor 4- and reactive oxygen/nitrogen species-mediated inflammatory responses but could induce gut dysbiosis in mice. J. Nanobiotechnol. 2018, 16, 86.
[70]
Miao, Z. H.; Jiang, S. S.; Ding, M. L.; Sun, S. Y.; Ma, Y.; Younis, M. R.; He, G.; Wang, J. G.; Lin, J.; Cao, Z. et al. Ultrasmall rhodium nanozyme with RONS scavenging and photothermal activities for anti-inflammation and antitumor theranostics of colon diseases. Nano Lett. 2020, 20, 3079-3089.
[71]
Long, W.; Mu, X. Y.; Wang, J. Y.; Xu, F. J.; Yang, J.; Wang, J. Y.; Sun, S.; Chen, J.; Sun, Y. M.; Wang, H. et al. Dislocation engineered PtPdMo alloy with enhanced antioxidant activity for intestinal injury. Front. Chem. 2019, 7, 784.
[72]
Fan, L.; Sun, P. Z.; Huang, Y. L.; Xu, Z. L.; Lu, X. M.; Xi, J. Q.; Han, J.; Guo, R. One-pot synthesis of Fe/N-doped hollow carbon nanospheres with multienzyme mimic activities against inflammation. ACS Appl. Bio Mater. 2020, 3, 1147-1157.
[73]
Liu, Y. F.; Cheng, Y.; Zhang, H.; Zhou, M.; Yu, Y. J.; Lin, S. C.; Jiang, B.; Zhao, X. Z.; Miao, L. Y.; Wei, C. W. et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 2020, 6, eabb2695.
[74]
Mishra, P. K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today 2017, 22, 1825-1834.
[75]
Bao, Q. Q.; Hu, P.; Xu, Y. Y.; Cheng, T. S.; Wei, C. Y.; Pan, L. M.; Shi, J. L. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 2018, 12, 6794-6805.
[76]
Kwon, H. J.; Cha, M. Y.; Kim, D.; Kim, D. K.; Soh, M.; Shin, K.; Hyeon, T.; Mook-Jung, I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer's disease. ACS Nano 2016, 10, 2860-2870.
[77]
Colon, J.; Herrera, L.; Smith, J.; Patil, S.; Komanski, C.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 2009, 5, 225-231.
[78]
Nelson, B. C.; Johnson, M. E.; Walker, M. L.; Riley, K. R.; Sims, C. M. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 2016, 5, 15.
[79]
Colon, J.; Hsieh, N.; Ferguson, A.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 2010, 6, 698-705.
[80]
Naha, P. C.; Hsu, J. C.; Kim, J.; Shah, S.; Bouché, M.; Si-Mohamed, S.; Rosario-Berrios, D. N.; Douek, P.; Hajfathalian, M.; Yasini, P. et al. Dextran-coated cerium oxide nanoparticles: A computed tomography contrast agent for imaging the gastrointestinal tract and inflammatory bowel disease. ACS Nano 2020, 14, 10187-10197.
[81]
Zhang, X. D.; Luo, Z. T.; Chen, J.; Shen, X.; Song, S. S.; Sun, Y. M.; Fan, S. J.; Fan, F. Y.; Leong, D. T.; Xie, J. P. Ultrasmall Au(10-12)(SG)(10-12) nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014, 26, 4565-4568.
[82]
Zhang, X. D.; Chen, J.; Luo, Z. T.; Wu, D.; Shen, X.; Song, S. S.; Sun, Y. M.; Liu, P. X.; Zhao, J.; Huo, S. D. et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy. Adv. Healthc. Mater. 2014, 3, 133-141.
[83]
Yao, M. F.; He, L. L.; McClements, D. J.; Xiao, H. Uptake of gold nanoparticles by intestinal epithelial cells: Impact of particle size on their absorption, accumulation, and toxicity. J. Agric. Food Chem. 2015, 63, 8044-8049.
[84]
Kolls, J. K.; Linden, A. Interleukin-17 family members and inflammation. Immunity 2004, 21, 467-476.
[85]
Miljkovic, D.; Cvetkovic, I.; Momcilovic, M.; Maksimovic-Ivanic, D.; Stosic-Grujicic, S.; Trajkovic, V. Interleukin-17 stimulates inducible nitric oxide synthase-dependent toxicity in mouse beta cells. Cell. Mol. Life Sci. 2005, 62, 2658-2668.
[86]
Morampudi, V.; Dalwadi, U.; Bhinder, G.; Sham, H. P.; Gill, S. K.; Chan, J.; Bergstrom, K. S.; Huang, T.; Ma, C.; Jacobson, K. et al. The goblet cell-derived mediator RELM-β drives spontaneous colitis in Muc2-deficient mice by promoting commensal microbial dysbiosis. Mucosal Immunol. 2016, 9, 1218-1233.
[87]
Parikh, K.; Antanaviciute, A.; Fawkner-Corbett, D.; Jagielowicz, M.; Aulicino, A.; Lagerholm, C.; Davis, S.; Kinchen, J.; Chen, H. H.; Alham, N. K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 2019, 567, 49-55.
[88]
Xie, S. F.; Liu, X. Y.; Xia, Y. N. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Res. 2015, 8, 82-96.
[89]
Huang, X. Q.; Zhang, H. H.; Guo, C. Y.; Zhou, Z. Y.; Zheng, N. F. Simplifying the creation of hollow metallic nanostructures: One-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew. Chem., Int. Ed. 2009, 48, 4808-4812.
[90]
Wang, J. Y.; Mu, X. Y.; Li, Y. H.; Xu, F. J.; Long, W.; Yang, J.; Bian, P. X.; Chen, J. C.; Ouyang, L. F.; Liu, H. L. et al. Hollow PtPdRh nanocubes with enhanced catalytic activities for in vivo clearance of radiation-induced ROS via surface-mediated bond breaking. Small 2018, 14, 1703736.
[91]
Ma, N.; Li, Y.; Xu, H. P.; Wang, Z. Q.; Zhang, X. Dual redox responsive assemblies formed from diselenide block copolymers. J. Am. Chem. Soc. 2010, 132, 442-443.
[92]
Zhang, W.; Lin, W. H.; Zheng, X. H.; He, S. S.; Xie, Z. G. Comparing effects of redox sensitivity of organic nanoparticles to photodynamic activity. Chem. Mater. 2017, 29, 1856-1863.
[93]
Pu, H. L.; Chiang, W. L.; Maiti, B.; Liao, Z. X.; Ho, Y. C.; Shim, M. S.; Chuang, E. Y.; Xia, Y. N.; Sung, H. W. Nanoparticles with dual responses to oxidative stress and reduced pH for drug release and anti-inflammatory applications. ACS Nano 2014, 8, 1213-1221.
[94]
Zhang, W.; Lin, W. H.; Pei, Q.; Hu, X. L.; Xie, Z. G.; Jing, X. B. Redox-hypersensitive organic nanoparticles for selective treatment of cancer cells. Chem. Mater. 2016, 28, 4440-4446.
[95]
Khare, V.; Krnjic, A.; Frick, A.; Gmainer, C.; Asboth, M.; Jimenez, K.; Lang, M.; Baumgartner, M.; Evstatiev, R.; Gasche, C. Mesalamine and azathioprine modulate junctional complexes and restore epithelial barrier function in intestinal inflammation. Sci. Rep. 2019, 9, 2842.
[96]
Gassull, M. A.; Cabré, E. Conventional medical management of Crohn’s disease: Sulfasalazine. In Crohn’s Disease and Ulcerative Colitis. Baumgart, D. C., Eds.; Springer: Berlin, 2017; pp 311-314.
[97]
Shahdadi Sardo, H.; Saremnejad, F.; Bagheri, S.; Akhgari, A.; Afrasiabi Garekani, H.; Sadeghi, F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int. J. Pharmaceut. 2019, 558, 367-379.
[98]
Chen, Z. J.; Vong, C. T.; Gao, C. F.; Chen, S. Y.; Wu, X.; Wang, S. P.; Wang, Y. T. Bilirubin nanomedicines for the treatment of reactive oxygen species (ROS)-mediated diseases. Mol. Pharm. 2020, 17, 2260-2274.
[99]
Stocker, R.; Yamamoto, Y.; McDonagh, A. F.; Glazer, A. N.; Ames, B. N. Bilirubin is an antioxidant of possible physiological importance. Science 1987, 235, 1043-1046.
[100]
Lee, D. Y.; Kim, J. Y.; Lee, Y.; Lee, S.; Miao, W. J.; Kim, H. S.; Min, J. J.; Jon, S. Black pigment gallstone inspired platinum-chelated bilirubin nanoparticles for combined photoacoustic imaging and photothermal therapy of cancers. Angew. Chem., Int. Ed. 2017, 129, 13872-13876.
[101]
Lee, Y.; Lee, S.; Lee, D. Y.; Yu, B.; Miao, W. J.; Jon, S. Multistimuli-responsive bilirubin nanoparticles for anticancer therapy. Angew. Chem., Int. Ed. 2016, 55, 10676-10680.
[102]
Lee, Y.; Lee, S.; Jon, S. Biotinylated bilirubin nanoparticles as a tumor microenvironment-responsive drug delivery system for targeted cancer therapy. Adv. Sci. 2018, 5, 1800017.
[103]
Shan, L. L.; Fan, W. P.; Wang, W. W.; Tang, W.; Yang, Z.; Wang, Z. T.; Liu, Y. J.; Shen, Z. Y.; Dai, Y. L.; Cheng, S. Y. et al. Organosilica-based hollow mesoporous bilirubin nanoparticles for antioxidation-activated self-protection and tumor-specific deoxygenation-driven synergistic therapy. ACS Nano 2019, 13, 8903-8916.
[104]
Yang, X. T.; Hu, C.; Tong, F.; Liu, R.; Zhou, Y.; Qin, L.; Ouyang, L.; Gao, H. L. Tumor microenvironment-responsive dual drug dimer-loaded PEGylated bilirubin nanoparticles for improved drug delivery and enhanced immune-chemotherapy of breast cancer. Adv. Funct. Mater. 2019, 29, 1901896.
[105]
Kim, D. E.; Lee, Y.; Kim, M.; Lee, S.; Jon, S.; Lee, S. H. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma. Biomaterials 2017, 140, 37-44.
[106]
Kim, J. Y.; Lee, D. Y.; Kang, S.; Miao, W. J.; Kim, H.; Lee, Y.; Jon, S. Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury. Biomaterials 2017, 133, 1-10.
[107]
Zheng, L.; Riehl, T. E.; Stenson, W. F. Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid. Gastroenterology 2009, 137, 2041-2051.
[108]
Lee, Y.; Sugihara, K.; Gillilland, M. G. III.; Jon, S.; Kamada, N.; Moon, J. J. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 2020, 19, 118-126.
[109]
Citi, S. Intestinal barriers protect against disease. Science 2018, 359, 1097-1098.
[110]
Lee, Y.; Kim, H.; Kang, S.; Lee, J.; Park, J.; Jon, S. Bilirubin nanoparticles as a nanomedicine for anti-inflammation therapy. Angew. Chem., Int. Ed. 2016, 128, 7586-7589.
[111]
Vong, L. B.; Tomita, T.; Yoshitomi, T.; Matsui, H.; Nagasaki, Y. An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. Gastroenterology 2012, 143, 1027-1036.E3.
[112]
Chan, H. C.; Jung, W.; Keum, H.; Kim, T. W.; Jon, S. Nanoparticles derived from the natural antioxidant rosmarinic acid ameliorate acute inflammatory bowel disease. ACS Nano 2020, 14, 6887-6896.
[113]
Zhao, J. L.; Cai, X. J.; Gao, W.; Zhang, L. L.; Zou, D. W.; Zheng, Y. Y.; Li, Z. S.; Chen, H. R. Prussian blue nanozyme with multienzyme activity reduces colitis in mice. ACS Appl. Mater. Interfaces 2018, 10, 26108-26117.
[114]
Zhao, J. L.; Gao, W.; Cai, X. J.; Xu, J. J.; Zou, D. W.; Li, Z. S.; Hu, B.; Zheng, Y. Y. Nanozyme-mediated catalytic nanotherapy for inflammatory bowel disease. Theranostics 2019, 9, 2843-2855.
[115]
Gou, S. Q.; Huang, Y. M.; Wan, Y.; Ma, Y.; Zhou, X.; Tong, X. L.; Huang, J.; Kang, Y. J.; Pan, G. Q.; Dai, F. Y. et al. Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials 2019, 212, 39-54.
[116]
Li, C. W.; Zhao, Y.; Cheng, J.; Guo, J. W.; Zhang, Q. X.; Zhang, X. J.; Ren, J.; Wang, F. C.; Huang, J.; Hu, H. Y. et al. A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota. Adv. Sci. 2019, 6, 1900610.
[117]
Xue, F. C.; Wang, Y. Q.; Zhang, Q. X.; Han, S. L.; Zhang, F. Z.; Jin, T. T.; Li, C. W.; Hu, H. Y.; Zhang, J. X. Self-assembly of affinity-controlled nanoparticles via host-guest interactions for drug delivery. Nanoscale 2018, 10, 12364-12377.
[118]
Zhang, Q. X.; Tao, H.; Lin, Y. Y.; Hu, Y.; An, H. J.; Zhang, D. L.; Feng, S. B.; Hu, H. Y.; Wang, R. B.; Li, X. H. et al. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials 2016, 105, 206-221.
[119]
Li, S. S.; Xie, A. Q.; Li, H.; Zou, X.; Zhang, Q. X. A self-assembled, ROS-responsive Janus-prodrug for targeted therapy of inflammatory bowel disease. J. Control. Release 2019, 316, 66-78.
[120]
Yoshitomi, T.; Nagasaki, Y. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries. Adv. Healthc. Mater. 2014, 3, 1149-1161.
[121]
Li, J. C.; Zhang, J.; Chen, Y.; Kawazoe, N.; Chen, G. P. TEMPO-conjugated gold nanoparticles for reactive oxygen species scavenging and regulation of stem cell differentiation. ACS Appl. Mater. Interfaces 2017, 9, 35683-35692.
[122]
Vong, L. B.; Kobayashi, M.; Nagasaki, Y. Evaluation of the toxicity and antioxidant activity of redox nanoparticles in zebrafish (Danio rerio) embryos. Mol. Pharm. 2016, 13, 3091-3097.
[123]
Yoshitomi, T.; Nagasaki, Y. Nitroxyl radical-containing nanoparticles for novel nanomedicine against oxidative stress injury. Nanomedicine 2011, 6, 509-618.
[124]
Feliciano, C. P.; Tsuboi, K.; Suzuki, K.; Kimura, H.; Nagasaki, Y. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Biomaterials 2017, 129, 68-82.
[125]
Vong, L. B.; Mo, J.; Abrahamsson, B.; Nagasaki, Y. Specific accumulation of orally administered redox nanotherapeutics in the inflamed colon reducing inflammation with dose-response efficacy. J. Control. Release 2015, 210, 19-25.
[126]
Vong, L. B.; Yoshitomi, T.; Morikawa, K.; Saito, S.; Matsui, H.; Nagasaki, Y. Oral nanotherapeutics: Effect of redox nanoparticle on microflora in mice with dextran sodium sulfate-induced colitis. J. Gastroenterol. 2014, 49, 806-813.
[127]
Vong, L. B.; Yoshitomi, T.; Matsui, H.; Nagasaki, Y. Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials 2015, 55, 54-63.
[128]
Yoshitomi, T.; Nagasaki, Y. Development of silica-containing redox nanoparticles for medical applications. Biomater. Sci. 2015, 3, 810-815.
[129]
Vong, L. B.; Nagasaki, Y. Development of redox nanomedicine for gastrointestinal complications via oral administration route. In Advances in Bioinspired and Biomedical Materials. Yoshihiro, I.; Si, C. X.; Inn-Kyu, K., Eds.; ACS Publications: New York, 2017; pp 47-67.
[130]
Burri, E.; Beglinger, C. Faecal calprotectin testing-the need for better standardization. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 583-584.
[131]
Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem., Int. Ed. 2011, 50, 586-621.
[132]
Sileika, T. S.; Barrett, D. G.; Zhang, R.; Lau, K. H. A.; Messersmith, P. B. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew. Chem., Int. Ed. 2013, 125, 10966-10970.
[133]
Singh, R.; Chandrashekharappa, S.; Bodduluri, S. R.; Baby, B. V.; Hegde, B.; Kotla, N. G.; Hiwale, A. A.; Saiyed, T.; Patel, P.; Vijay-Kumar, M. et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 2019, 10, 89.
[134]
Han, Y. H.; Song, M. Y.; Gu, M.; Ren, D. Y.; Zhu, X. A.; Cao, X. Q.; Li, F.; Wang, W. C.; Cai, X. K.; Yuan, B. et al. Dietary intake of whole strawberry inhibited colonic inflammation in dextran-sulfate-sodium-treated mice via restoring immune homeostasis and alleviating gut microbiota dysbiosis. J. Agric. Food Chem. 2019, 67, 9168-9177.
[135]
Chiou, Y. S.; Ma, N. J. L.; Sang, S. M.; Ho, C. T.; Wang, Y. J.; Pan, M. H. Peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) potently suppresses dextran sulfate sodium-induced colitis and colon tumorigenesis in mice. J. Agric. Food Chem. 2012, 60, 3441-3451.
[136]
Shutava, T. G.; Balkundi, S. S.; Vangala, P.; Steffan, J. J.; Bigelow, R. L.; Cardelli, J. A.; O'Neal, D. P.; Lvov, Y. M. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 2009, 3, 1877-1885.
[137]
Hu, B.; Ma, F. G.; Yang, Y. K.; Xie, M. H.; Zhang, C.; Xu, Y.; Zeng, X. X. Antioxidant nanocomplexes for delivery of epigallocatechin-3-gallate. J. Agric. Food Chem. 2016, 64, 3422-3429.
[138]
Wang, X. Y.; Yan, J. J.; Wang, L. Z.; Pan, D. H.; Yang, R. L.; Xu, Y. P.; Sheng, J.; Huang, Q. H.; Zhao, H. M.; Yang, M. Rational design of polyphenol-poloxamer nanovesicles for targeting inflammatory bowel disease therapy. Chem. Mater. 2018, 30, 4073-4080.
[139]
Liang, K.; Chung, J. E.; Gao, S. J.; Yongvongsoontorn, N.; Kurisawa, M. Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly (ethylene glycol)-green tea catechin conjugate for cancer therapy. Adv. Mater. 2018, 30, 1706963.
[140]
Gou, S. Q.; Chen, Q. B.; Liu, Y.; Zeng, L.; Song, H. L.; Xu, Z. G.; Kang, Y. J.; Li, C. M.; Xiao, B. Green fabrication of ovalbumin nanoparticles as natural polyphenol carriers for ulcerative colitis therapy. ACS Sustain. Chem. Eng. 2018, 6, 12658-12667.
[141]
Zhang, W.; Hu, S. L.; Yin, J. J.; He, W. W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860-5865.
[142]
Zhang, K.; Tu, M. J.; Gao, W.; Cai, X. J.; Song, F. H.; Chen, Z.; Zhang, Q.; Wang, J.; Jin, C. T.; Shi, J. J. et al. Hollow prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 2019, 19, 2812-2823.
[143]
Komkova, M. A.; Karyakina, E. E.; Karyakin, A. A. Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J. Am. Chem. Soc. 2018, 140, 11302-11307.
[144]
Vázquez-González, M.; Torrente-Rodríguez, R. M.; Kozell, A.; Liao, W. C.; Cecconello, A.; Campuzano, S.; Pingarrón, J. M.; Willner, I. Mimicking peroxidase activities with prussian blue nanoparticles and their cyanometalate structural analogues. Nano Lett. 2017, 17, 4958-4963.
[145]
Gopinath, D.; Ahmed, M. R.; Gomathi, K.; Chitra, K.; Sehgal, P. K.; Jayakumar, R. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 2004, 25, 1911-1917.
[146]
Singh, D. K.; Jagannathan, R.; Khandelwal, P.; Abraham, P. M.; Poddar, P. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: An experimental and density functional theory investigation. Nanoscale 2013, 5, 1882-1893.
[147]
Manichanh, C.; Borruel, N.; Casellas, F.; Guarner, F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 599-608.
[148]
Sommer, F.; Anderson, J. M.; Bharti, R.; Raes, J.; Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 2017, 15, 630-638.
[149]
Zhou, J. C.; Zhang, X. W. Akkermansia muciniphila: A promising target for the therapy of metabolic syndrome and related diseases. Chin. J. Nat. Med. 2019, 17, 835-841.
[150]
Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T. A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446-450.
[151]
Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G. H.; Yamasaki, S.; Saito, T.; Ohba, Y. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011, 331, 337-341.
[152]
Galdeano, C. M.; Perdigón, G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin. Vaccine Immunol. 2006, 13, 219-226.
[153]
Madsen, K. L.; Doyle, J. S.; Jewell, L. D.; Tavernini, M. M.; Fedorak, R. N. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 1999, 116, 1107-1114.
[154]
Zhu, W. H.; Winter, M. G.; Byndloss, M. X.; Spiga, L.; Duerkop, B. A.; Hughes, E. R.; Büttner, L.; de Lima Romão, E.; Behrendt, C. L.; Lopez, C. A. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 2018, 553, 208-211.
[155]
Xia, Y. N. Nanomaterials at work in biomedical research. Nat. Mater. 2008, 7, 758-760.
[156]
Morris, V. J. Emerging roles of engineered nanomaterials in the food industry. Trends Biotechnol. 2011, 29, 509-516.
[157]
Miernicki, M.; Hofmann, T.; Eisenberger, I.; von der Kammer, F.; Praetorius, A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 2019, 14, 208-216.
[158]
Karavolos, M.; Holban, A. Nanosized drug delivery systems in gastrointestinal targeting: Interactions with microbiota. Pharmaceuticals 2016, 9, 62.
[159]
Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634-641.
[160]
Van Den Brule, S.; Ambroise, J.; Lecloux, H.; Levard, C.; Soulas, R.; De Temmerman, P. J.; Palmai-Pallag, M.; Marbaix, E.; Lison, D. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part. Fibre Toxicol. 2016, 13, 38.
[161]
Javurek, A. B.; Suresh, D.; Spollen, W. G.; Hart, M. L.; Hansen, S. A.; Ellersieck, M. R.; Bivens, N. J.; Givan, S. A.; Upendran, A.; Kannan, R. et al. Gut dysbiosis and neurobehavioral alterations in rats exposed to silver nanoparticles. Sci. Rep. 2017, 7, 2822.
[162]
Mu, W.; Wang, Y.; Huang, C.; Fu, Y. J.; Li, J. Q.; Wang, H.; Jia, X. D.; Ba, Q. Effect of long-term intake of dietary titanium dioxide nanoparticles on intestine inflammation in mice. J. Agric. Food Chem. 2019, 67, 9382-9389.
[163]
Li, J.; Yang, S. M.; Lei, R. H.; Gu, W. H.; Qin, Y. X.; Ma, S. H.; Chen, K.; Chang, Y.; Bai, X.; Xia, S. B. et al. Oral administration of rutile and anatase TiO2 nanoparticles shifts mouse gut microbiota structure. Nanoscale 2018, 10, 7736-7745.
[164]
Cao, X. Q.; Han, Y. H.; Gu, M.; Du, H. J.; Song, M. Y.; Zhu, X. A.; Ma, G. X.; Pan, C.; Wang, W. C.; Zhao, E. M. et al. Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: Gut microbiota dysbiosis, colonic inflammation, and proteome alterations. Small 2020, 16, 2001858.
[165]
Li, J. J.; Cha, R. T.; Zhao, X. H.; Guo, H. B.; Luo, H. Z.; Wang, M. Z.; Zhou, F. S.; Jiang, X. Y. Gold nanoparticles cure bacterial infection with benefit to intestinal microflora. ACS Nano 2019, 13, 5002-5014.
[166]
Chen, H. Q.; Zhao, R. F.; Wang, B.; Zheng, L. N.; Ouyang, H.; Wang, H. L.; Zhou, X. Y.; Zhang, D.; Chai, Z. F.; Zhao, Y. L. et al. Acute oral administration of single-walled carbon nanotubes increases intestinal permeability and inflammatory responses: Association with the changes in gut microbiota in mice. Adv. Healthc. Mater. 2018, 7, 1701313.
[167]
Li, J.; Lei, R. H.; Li, X.; Xiong, F. X.; Zhang, Q. Y.; Zhou, Y.; Yang, S. M.; Chang, Y. N.; Chen, K.; Gu, W. H. et al. The antihyperlipidemic effects of fullerenol nanoparticles via adjusting the gut microbiota in vivo. Part. Fibre Toxicol. 2018, 15, 5.
[168]
Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem., Int. Ed. 2013, 52, 1636-1653.
[169]
Richter, A. P.; Brown, J. S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Cohen Hubal, E. A.; Paunov, V. N.; Stoyanov, S. D.; Velev, O. D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat Nanotechnol 2015, 10, 817-823.
[170]
Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Lifia, J.; Amal, R. Reversible antimicrobial photoswitching in nanosilver. Small 2009, 5, 341-344.
[171]
Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271-4275.
[172]
Lohse, S. E.; Murphy, C. J. Applications of colloidal inorganic nanoparticles: From medicine to energy. J. Am. Chem. Soc. 2012, 134, 15607-15620.
[173]
Glover, R. D.; Miller, J. M.; Hutchison, J. E. Generation of metal nanoparticles from silver and copper objects: Nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 2011, 5, 8950-8957.
[174]
Tian, X.; Jiang, X. M.; Welch, C.; Croley, T. R.; Wong, T. Y.; Chen, C.; Fan, S. H.; Chong, Y.; Li, R. B.; Ge, C. C. et al. Bactericidal effects of silver nanoparticles on Lactobacilli and the underlying mechanism. ACS Appl. Mater. Interfaces 2018, 10, 8443-8450.
[175]
Mao, Z. L.; Li, Y. Q.; Dong, T. Y.; Zhang, L. N.; Zhang, Y. Q.; Li, S. S.; Hu, H. T.; Sun, C. F.; Xia, Y. K. Exposure to titanium dioxide nanoparticles during pregnancy changed maternal gut microbiota and increased blood glucose of rat. Nanoscale Res. Lett. 2019, 14, 26.
[176]
Limage, R.; Tako, E.; Kolba, N.; Guo, Z. Y.; García-Rodríguez, A.; Marques, C. N. H.; Mahler, G. J. TiO2 nanoparticles and commensal bacteria alter mucus layer thickness and composition in a gastrointestinal tract model. Small 2020, 16, 2000601.
[177]
Peters, R. J. B.; van Bemmel, G.; Herrera-Rivera, Z.; Helsper, H. P. F. G.; Marvin, H. J. P.; Weigel, S.; Tromp, P. C.; Oomen, A. G.; Rietveld, A. G.; Bouwmeester, H. Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. J. Agric. Food Chem. 2014, 62, 6285-6293.
[178]
Wang, Y.; Chen, Z. J.; Ba, T.; Pu, J.; Chen, T.; Song, Y. S.; Gu, Y. E.; Qian, Q.; Xu, Y. Y.; Xiang, K. et al. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small 2013, 9, 1742-1752.
[179]
Yang, X. L.; Yang, J. C.; Wang, L.; Ran, B.; Jia, Y. X.; Zhang, L. M.; Yang, G. W.; Shao, H. W.; Jiang, X. Y. Pharmaceutical intermediate-modified gold nanoparticles: Against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 2017, 11, 5737-5745.
[180]
Li, X. N.; Robinson, S. M.; Gupta, A.; Saha, K.; Jiang, Z. W.; Moyano, D. F.; Sahar, A.; Riley, M. A.; Rotello, V. M. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 2014, 8, 10682-10686.
[181]
Vecitis, C. D.; Zodrow, K. R.; Kang, S.; Elimelech, M. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 2010, 4, 5471-5479.
[182]
Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 2007, 23, 8670-8673.
[183]
Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731-5736.
[184]
Rajavel, K.; Gomathi, R.; Manian, S.; Rajendra Kumar, R. T. In vitro bacterial cytotoxicity of CNTs: Reactive oxygen species mediate cell damage edges over direct physical puncturing. Langmuir 2014, 30, 592-601.
[185]
Lyon, D. Y.; Brunet, L.; Hinkal, G. W.; Wiesner, M. R.; Alvarez, P. J. J. Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett. 2008, 8, 1539-1543.
[186]
Kang, S.; Herzberg, M.; Rodrigues, D. F.; Elimelech, M. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir 2008, 24, 6409-6413.
[187]
Bertoni, S.; Liu, Z. H.; Correia, A.; Martins, J. P.; Rahikkala, A.; Fontana, F.; Kemell, M.; Liu, D. F.; Albertini, B.; Passerini, N. et al. pH and reactive oxygen species-sequential responsive nano-in-micro composite for targeted therapy of inflammatory bowel disease. Adv. Funct. Mater. 2018, 28, 1806175.
[188]
Liu, T. F.; Xiao, B. W.; Xiang, F.; Tan, J. L.; Chen, Z.; Zhang, X. R.; Wu, C. Z.; Mao, Z. W.; Luo, G. X.; Chen, X. Y. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 2020, 11, 2788.
[189]
Sardesai, N. P.; Ganesana, M.; Karimi, A.; Leiter, J. C.; Andreescu, S. Platinum-doped ceria based biosensor for in vitro and in vivo monitoring of lactate during hypoxia. Anal. Chem. 2015, 87, 2996-3003.
[190]
Soh, M.; Kang, D. W.; Jeong, H. G.; Kim, D.; Kim, D. Y.; Yang, W.; Song, C.; Baik, S.; Choi, I. Y.; Ki, S. K. et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew. Chem., Int. Ed. 2017, 56, 11399-11403.
[191]
Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28-51.
[192]
Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Nanotechnol. 2007, 25, 1165-1170.
[193]
Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332-348.
[194]
Cui, X. J.; Bao, L.; Wang, X. Y.; Chen, C. Y. The nano-intestine interaction: Understanding the location-oriented effects of engineered nanomaterials in the intestine. Small 2020, 16, 1907665.
[195]
Saleh, M.; Trinchieri, G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat. Rev. Immunol. 2011, 11, 9-20.
[196]
Sun, Y.; Li, L.; Xie, R. X.; Wang, B. M.; Jiang, K.; Cao, H. L. Stress triggers flare of inflammatory bowel disease in children and adults. Front Pediatr. 2019, 7, 432.
[197]
Spiller, R.; Major, G. IBS and IBD-separate entities or on a spectrum? Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 613-621.
[198]
Mayer, E. A.; Padua, D.; Tillisch, K. Altered brain-gut axis in autism: Comorbidity or causative mechanisms? BioEssays 2014, 36, 933-939.
[199]
Mayer, E. A.; Savidge, T.; Shulman, R. J. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 2014, 146, 1500-1512.
[200]
Zhao, B. T.; Wu, J. B.; Li, J. H.; Bai, Y.; Luo, Y.; Ji, B.; Xia, B.; Liu, Z. G.; Tan, X. T.; Lv, J. Y. et al. Lycopene alleviates DSS-induced colitis and behavioral disorders via mediating microbes-gut-brain axis balance. J. Agric. Food Chem. 2020, 68, 3963-3975.
[201]
Song, W.; Anselmo, A. C.; Huang, L. Nanotechnology intervention of the microbiome for cancer therapy. Nat. Nanotechnol. 2019, 14, 1093-1103.
Nano Research
Pages 2535-2557
Cite this article:
Ren Q, Sun S, Zhang X-D. Redox-active nanoparticles for inflammatory bowel disease. Nano Research, 2021, 14(8): 2535-2557. https://doi.org/10.1007/s12274-021-3303-5
Topics:

1125

Views

32

Crossref

31

Web of Science

32

Scopus

1

CSCD

Altmetrics

Received: 08 October 2020
Revised: 14 December 2020
Accepted: 19 December 2020
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return