Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We propose a plasmonic atomic force microscopy (AFM) probe, which takes a part of the laser beam for monitoring cantilever deflection as the excitation light source. Photonic crystal cavities are integrated near the cantilever's free end where the laser spot locates. The transmitted light excites surface plasmon polaritons on the metal-coated tip and induces a confined hot-spot at the tip apex. Numerical simulations demonstrate that the plasmonic probe can couple a tilted, linearly polarized beam efficiently and yield a remarkable local electromagnetic enhancement with the intensity being around 21 times stronger than that of the original probe. For demonstration, we employ the plasmonic probe in electrostatic force microscopy and scanning Kelvin probe microscopy to study the impact of local light field on the photoelectric characteristics of SiO2 and Au nanoparticles. Compared with the original probe, obvious differences are observed in the electrostatic force gradients on SiO2 nanoparticles and in the surface potentials of Au nanoparticles. The plasmonic probe can enable AFM as a powerful tool for simultaneous optical, mechanical and electrical characterizations.
Tsai, K. T.; Wurtz, G. A.; Chu, J. Y.; Cheng, T. Y.; Wang, H. H.; Krasavin, A. V.; He, J. H.; Wells, B. M.; Podolskiy, V. A.; Wang, J. K. et al. Looking into meta-atoms of plasmonic nanowire metamaterial. Nano Lett. 2014, 14, 4971–4976.
Jiang, R. H.; Chen, C.; Lin, D. Z.; Chou, H. C.; Chu, J. Y.; Yen, T. J. Near-field plasmonic probe with super resolution and high throughput and signal-to-noise ratio. Nano Lett. 2018, 18, 881–885.
Huth, F.; Chuvilin, A.; Schnell, M.; Amenabar, I.; Krutokhvostov, R.; Lopatin, S.; Hillenbrand, R. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 2013, 13, 1065–1072.
Pohl, D. W.; Denk, W.; Lanz, M. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 1984, 44, 651–653.
Reddick, R. C.; Warmack, R. J.; Ferrell, T. L. New form of scanning optical microscopy. Phys. Rev. B 1989, 39, 767–770.
De Angelis, F.; Das, G.; Candeloro, P.; Patrini, M.; Galli, M.; Bek, A.; Lazzarino, M.; Maksymov, I.; Liberale, C.; Andreani, L. C. et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 2010, 5, 67–72.
Sonntag, M. D.; Pozzi, E. A.; Jiang, N.; Hersam, M. C.; Van Duyne, R. P. Recent advances in tip-enhanced Raman spectroscopy. J. Phys. Chem. Lett. 2014, 5, 3125–3130.
Smolsky, J. M.; Krasnoslobodtsev, A. V. Nanoscopic imaging of oxidized graphene monolayer using tip-enhanced Raman scattering. Nano Res. 2018, 11, 6346–6359.
Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 2000, 76, 3130–3132.
Stöckle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 2000, 318, 131–136.
Hayazawa, N.; Inouye, Y.; Sekkat, Z.; Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 2000, 183, 333–336.
Quong, M. C.; Elezzabi, A. Y. Offset-apertured near-field scanning optical microscope probes. Opt. Express 2007, 15, 10163–10174.
De Angelis, F.; Patrini, M.; Das, G.; Maksymov, I.; Galli, M.; Businaro, L.; Andreani, L. C.; Di Fabrizio, E. A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. Nano Lett. 2008, 8, 2321–2327.
Bondy, A. L.; Kirpes, R. M.; Merzel, R. L.; Pratt, K. A.; Holl, M. M. B.; Ault, A. P. Atomic force microscopy-infrared spectroscopy of individual atmospheric aerosol particles: Subdiffraction limit vibrational spectroscopy and morphological analysis. Anal. Chem. 2017, 89, 8594–8598.
Lu, F.; Jin, M. Z.; Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photonics 2014, 8, 307–312.
Wang, Y.; Srituravanich, W.; Sun, C.; Zhang, X. Plasmonic nearfield scanning probe with high transmission. Nano Lett. 2008, 8, 3041–3045.
He, X. Y.; Li, P.; Liu, P. C.; Zhang, X. X.; Zhou, X. Q.; Liu, W.; Qiu, X. H. Nanopatterning on calixarene thin films via low-energy field-emission scanning probe lithography. Nanotechnology 2018, 29, 325301.
Fiedler-Higgins, C. I.; Cox, L. M.; DelRio, F. W.; Killgore, J. P. Monitoring fast, voxel-scale cure kinetics via sample-coupled-resonance photorheology. Small Methods 2019, 3, 1800275.
Li, X. P.; Liang, Z. S.; Zhang, S. D.; Wang, T. T.; Hang, W. Sub-micrometer-scale chemical analysis by nanosecond-laser-induced tip-enhanced ablation and ionization time-of-flight mass spectrometry. Nano Res. 2018, 11, 5989–5996.
Lotito, V.; Sennhauser, U.; Hafner, C. Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips. Opt. Express 2010, 18, 8722–8734.
Zaccaria, R. P.; De Angelis, F.; Toma, A.; Razzari, L.; Alabastri, A.; Das, G.; Liberale, C.; Di Fabrizio, E. Surface plasmon polariton compression through radially and linearly polarized source. Opt. Lett. 2012, 37, 545–547.
Qian, Q. B.; Yu, H. C.; Gou, P.; Xu, J.; An, Z. H. Plasmonic focusing of infrared SNOM tip patterned with asymmetric structures. Opt. Express 2015, 23, 12923–12934.
Lotito, V.; Sennhauser, U.; Hafner, C.; Bona, G. L. Fully metal-coated scanning near-field optical microscopy probes with spiral corrugations for superfocusing under arbitrarily oriented linearly polarised excitation. Plasmonics 2011, 6, 327–336.
Zhang, K. F.; Taniguchi, S. I.; Tachizaki, T. Generation of broadband near-field optical spots using a thin-film silicon waveguide with gradually changing thickness. Opt. Lett. 2018, 43, 5937–5940.
Ghaemi, H. F.; Thio, T.; Grupp, D. E.; Ebbesen, T. W.; Lezec, H. J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 1998, 58, 6779–6782.
Palik, E. D. Handbook of Optical Constants; Academic Press: Orlando, 1985.
Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.
Lei, C. H.; Das, A.; Elliott, M.; Macdonald, J. E. Quantitative electrostatic force microscopy-phase measurements. Nanotechnology 2004, 15, 627–634.
Boularas, A.; Baudoin, F.; Villeneuve-Faure, C.; Clain, S.; Teyssedre, G. Multi-dimensional modelling of electrostatic force distance curve over dielectric surface: Influence of tip geometry and correlation with experiment. J. Appl. Phys. 2014, 116, 084106.
Peng, S. M.; Zeng, Q. B.; Yang, X.; Hu, J.; Qiu, X. H.; He, J. L. Local dielectric property detection of the interface between nanoparticle and polymer in nanocomposite dielectrics. Sci. Rep. 2016, 6, 38978.
Li, L. H.; Tian, T.; Cai, Q. R.; Shih, C. J.; Santos, E. J. G. Asymmetric electric field screening in van der Waals heterostructures. Nat. Commun. 2018, 9, 1271.
Matei, G. A.; Thoreson, E. J.; Pratt, J. R.; Newell, D. B.; Burnham, N. A. Precision and accuracy of thermal calibration of atomic force microscopy cantilevers. Rev. Sci. Instrum. 2006, 77, 083703.
Riedel, C.; Arinero, R.; Tordjeman, P.; Ramonda, M.; Lévêque, G.; Schwartz, G. A.; De Oteyza, D. G.; Alegria, A.; Colmenero, J. Determination of the nanoscale dielectric constant by means of a double pass method using electrostatic force microscopy. J. Appl. Phys. 2009, 106, 024315.
Coffey, D. C.; Ginger, D. S. Time-resolved electrostatic force microscopy of polymer solar cells. Nat. Mater. 2006, 5, 735–740.
Gamaly, E. G.; Rode, A. V. Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulse. J. Opt. Soc. Am. B 2014, 31, C36–C43.
Jiang, K.; Smith, D. A.; Pinchuk, A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C 2013, 117, 27073–27080.
Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011, 66, 1–27.
Ziegler, D.; Stemmer, A. Force gradient sensitive detection in lift-mode Kelvin probe force microscopy. Nanotechnology 2011, 22, 075501.
Moores, B.; Hane, F.; Eng, L.; Leonenko, Z. Kelvin probe force microscopy in application to biomolecular films: Frequency modulation, amplitude modulation, and lift mode. Ultramicroscopy 2010, 110, 708–711.
Panchal, V.; Pearce, R.; Yakimova, R.; Tzalenchuk, A.; Kazakova, O. Standardization of surface potential measurements of graphene domains. Sci. Rep. 2013, 3, 2597.
Huang, X. H.; El-Sayed, M. A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28.
Sheldon, M. T.; van de Groep, J.; Brown, A. M.; Polman, A.; Atwater, H. A. Plasmoelectric potentials in metal nanostructures. Science 2014, 346, 828–831.
Carlson, M. T.; Khan, A.; Richardson, H. H. Local temperature determination of optically excited nanoparticles and nanodots. Nano Lett. 2011, 11, 1061–1069.