Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As a famous hole transporting material, nickle oxide (NiOX) has drawn enormous attention due to its low cost and superior stability. However, the relatively low conductivity and high-density surface trap states of NiOX severely limit device performance in solar cell applications. Interfacial engineering is an efficient approach to achieve remarkable hole-transporting performance by surface passivation. Herein, the efficient NiOX hole transport layer was prepared by surface passivation engineering strategy via facile solution processes with cesium iodide (CsI). It is demonstrated that CsI plays a super-effective dual-function role in inverted solar cell device: On one hand, the presence of CsI hugely passivates the surface trap states at the NiOX/perovskite interface along with obviously improved conductivity by the incorporated Cs+; on the other hand, the ions immigration is significantly suppressed by the presence of I ion for high-quality perovskite films, resulting in a stable contact interface. The ameliorative interface leads to largely reduced carrier non-radiative recombination, attributing to boosted carrier extraction efficiency. As a result, decent power conversion efficiency (PCE) of 18.48% with a noticeable fill factor (FF) beyond 80% was achieved. This facile and efficient surface engineering approach with dual-function shows excellent potential for the design of high-performance functional interfacial modification layer to achieve high-performance solar cells.
Ru, P. B.; Bi, E. B.; Zhang, Y.; Wang, Y. B.; Kong, W. Y.; Sha, Y. M.; Tang, W. T.; Zhang, P.; Wu, Y. Z.; Chen, W. et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 2020, 10, 1903487.
Chen, Y. H.; Tan, S. Q.; Li, N. X.; Huang, B. L.; Niu, X. X.; Li, L.; Sun, M. Z.; Zhang, Y.; Zhang, X.; Zhu, C. et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule 2020, 4, 1961–1976.
Yin, X. T.; Guo, Y. X.; Xie, H. X.; Que, W. X.; Kong, L. B. Nickel oxide as efficient hole transport materials for perovskite solar cells. Solar RRL 2019, 3, 1900001.
Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103.
Kim, H. I.; Kim, M. J.; Choi, K.; Lim, C.; Kim, Y. H.; Kwon, S. K.; Park, T. Improving the performance and stability of inverted planar flexible perovskite solar cells employing a novel NDI-based polymer as the electron transport layer. Adv. Energy Mater. 2018, 8, 1702872.
Liu, Z. Y.; Chang, J. J.; Lin, Z. H.; Zhou, L.; Yang, Z.; Chen, D. Z.; Zhang, C. F.; Liu, S. Z.; Hao, Y. High-performance planar perovskite solar cells using low temperature, solution-combustion-based nickel oxide hole transporting layer with efficiency exceeding 20%. Adv. Energy Mater. 2018, 8, 1703432.
Luo, D. Y.; Yang, W. Q.; Wang, Z. P.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z. J. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360, 1442–1446.
Hu, L. J.; Sun, K.; Wang, M.; Chen, W.; Yang, B.; Fu, J. H.; Xiong, Z.; Li, X. Y.; Tang, X. S.; Zang, Z. G. et al. Inverted planar perovskite solar cells with a high fill factor and negligible hysteresis by the dual effect of NaCl-doped PEDOT: PSS. ACS Appl. Mater. Interfaces 2017, 9, 43902–43909.
Ma, S.; Liu, X. P.; Wu, Y. Z.; Tao, Y.; Ding, Y.; Cai, M. L.; Dai, S. Y.; Liu, X. Y.; Alsaedi, A.; Hayat, T. Efficient and flexible solar cells with improved stability through incorporation of a multifunctional small molecule at PEDOT: PSS/perovskite interface. Solar Energy Mater. Solar Cells 2020, 208, 110379.
Luo, H.; Lin, X. H.; Hou, X.; Pan, L. K.; Huang, S. M.; Chen, X. H. Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT: PSS hole transport layer. Nano-Micro Lett. 2017, 9, 39.
Kung, P. K.; Li, M. H.; Lin, P. Y.; Chiang, Y. H.; Chan, C. R.; Guo, T. F.; Chen, P. A review of inorganic hole transport materials for perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1800882.
Peng, H. T.; Sun, W. H.; Li, Y. L.; Ye, S. Y.; Rao, H. X.; Yan, W. B.; Zhou, H. P.; Bian, Z. Q.; Huang, C. H. Solution processed inorganic V2OX as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency. Nano Res. 2016, 9, 2960–2971.
Chen, W.; Wu, Y. H.; Tu, B.; Liu, F. Z.; Djurišić, A. B.; He, Z. B. Inverted planar organic-inorganic hybrid perovskite solar cells with NiOX hole-transport layers as light-in window. Appl. Surf. Sci. 2018, 451, 325–332.
Ge, B.; Qiao, H. W.; Lin, Z. Q.; Zhou, Z. R.; Chen, A. P.; Yang, S.; Hou, Y.; Yang, H. G. Deepening the valance band edges of NiOX contacts by alkaline earth metal doping for efficient perovskite photovoltaics with high open-circuit voltage. Solar RRL 2019, 3, 1900192.
Lee, S.; Roh, H. S.; Han, G. S.; Lee, J. K. Controlled oxidation of Ni for stress-free hole transport layer of large-scale perovskite solar cells. Nano Res. 2019, 12, 3089–3094.
Jiang, F.; Choy, W. C. H.; Li, X. C.; Zhang, D.; Cheng, J. Q. Post-treatment-free solution-processed non-stoichiometric NiOX nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Adv. Mater. 2015, 27, 2930–2937.
Corani, A.; Li, M. H.; Shen, P. S.; Chen, P.; Guo, T. F.; El Nahhas, A.; Zheng, K. B.; Yartsev, A.; Sundström, V.; Ponseca, C. S. Jr. Ultrafast dynamics of hole injection and recombination in organometal halide perovskite using nickel oxide as p-type contact electrode. J. Phys. Chem. Lett. 2016, 7, 1096–1101.
Fan, R. D.; Huang, Y.; Wang, L. G.; Li, L.; Zheng, G. H. J.; Zhou, H. P. The progress of interface design in perovskite-based solar cells. Adv. Energy Mater. 2016, 6, 1600460.
Chen, W.; Liu, F. Z.; Feng, X. Y.; Djurišić, A. B.; Chan, W. K.; He, Z. B. Cesium doped NiOX as an efficient hole extraction layer for inverted planar perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700722.
Nie, W. Y.; Tsai, H.; Blancon, J. C.; Liu, F. Z.; Stoumpos, C. C.; Traore, B.; Kepenekian, M.; Durand, O.; Katan, C.; Tretiak, S. et al. Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide. Adv. Mater. 2018, 30, 1703879.
Li, G. J.; Jiang, Y. B.; Deng, S. B.; Tam, A.; Xu, P.; Wong, M.; Kwok, H. S. Overcoming the limitations of sputtered nickel oxide for high-efficiency and large-area perovskite solar cells. Adv. Sci. 2017, 4, 1700463.
Chen, W.; Wu, Y. H.; Fan, J.; Djurišić, A. B.; Liu, F. Z.; Tam, H. W.; Ng, A.; Surya, C.; Chan, W. K.; Wang, D. et al. Understanding the doping effect on NiO: Toward high-performance inverted perovskite solar cells. Adv. Energy Mater. 2018, 8, 1703519.
Wei, Y.; Yao, K.; Wang, X. F.; Jiang, Y. H.; Liu, X. Y.; Zhou, N. G.; Li, F. Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer. Appl. Surf. Sci. 2018, 427, 782–790.
Huang, A. B.; Zhu, J. T.; Zheng, J. Y.; Yu, Y.; Liu, Y.; Yang, S. W.; Bao, S. H.; Lei, L.; Jin, P. Achieving high-performance planar perovskite solar cells with co-sputtered co-doping NiOX hole transport layers by efficient extraction and enhanced mobility. J. Mater. Chem. C 2016, 4, 10839–10846.
Hou, D. G.; Zhang, J.; Gan, X. L.; Yuan, H. B.; Yu, L. T.; Lu, C. J.; Sun, H. R.; Hu, Z. Y.; Zhu, Y. J. Pb and Li co-doped NiOX for efficient inverted planar perovskite solar cells. J. Colloid Interface Sci. 2020, 559, 29–38.
Chandrasekhar, P. S.; Seo, Y. H.; Noh, Y. J.; Na, S. I. Room temperature solution-processed Fe doped NiOX as a novel hole transport layer for high efficient perovskite solar cells. Appl. Surf. Sci. 2019, 481, 588–596.
Chen, X. F.; Xu, L.; Chen, C.; Wu, Y. J.; Bi, W. J.; Song, Z. L.; Zhuang, X. M.; Yang, S.; Zhu, S. D.; Song, H. W. Rare earth ions doped NiOX hole transport layer for efficient and stable inverted perovskite solar cells. J. Power Sources 2019, 444, 227267.
Chen, W.; Zhou, Y. C.; Wang, L. J.; Wu, Y. H.; Tu, B.; Yu, B. B.; Liu, F. Z.; Tam, H. W.; Wang, G.; Djurišić, A. B. et al. Molecule-doped nickel oxide: Verified charge transfer and planar inverted mixed cation perovskite solar cell. Adv. Mater. 2018, 30, 1800515.
Bai, Y.; Chen, H. N.; Xiao, S.; Xue, Q. F.; Zhang, T.; Zhu, Z. L.; Li, Q.; Hu, C.; Yang, Y.; Hu, Z. C. et al. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Adv. Funct. Mater. 2016, 26, 2950–2958.
Zhang, Y. J.; Zhang, S. S.; Wu, S. H.; Chen, C. L.; Zhu, H. M.; Xiong, Z. Z.; Chen, W. T.; Chen, R.; Fang, S. Y.; Chen, W. Bifunctional molecular modification improving efficiency and stability of inverted perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1800645.
Chen, W.; Zhou, Y. C.; Chen, G. C.; Wu, Y. H.; Tu, B.; Liu, F. Z.; Huang, L.; Ng, A. M. C.; Djurišić, A. B.; He, Z. B. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803872.
Zhang, J. K.; Luo, H.; Xie, W. J.; Lin, X. H.; Hou, X.; Zhou, J. P.; Huang, S. M.; Ou-Yang, W.; Sun, Z.; Chen, X. H. Efficient and ultraviolet durable planar perovskite solar cells via a ferrocenecarboxylic acid modified nickel oxide hole transport layer. Nanoscale 2018, 10, 5617–5625.
Liu, Y. N.; Duan, J. J.; Zhang, J. K.; Huang, S. M.; Ou-Yang, W.; Bao, Q. Y.; Sun, Z.; Chen, X. H. High efficiency and stability of inverted perovskite solar cells using phenethyl ammonium iodide-modified interface of NiOX and perovskite layers. ACS Appl. Mater. Interfaces 2020, 12, 771–779.
Ren, Z. W.; Xiao, X. T.; Ma, R. M.; Lin, H.; Wang, K.; Sun, X. W.; Choy, W. C. H. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv. Funct. Mater. 2019, 29, 1905339.
Li, W. Z.; Zhang, W.; van Reenen, S.; Sutton, R. J.; Fan, J. D.; Haghighirad, A. A.; Johnston, M. B.; Wang, L. D.; Snaith, H. J. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 2016, 9, 490–498.
Liu, X.; Zhang, Y. F.; Shi, L.; Liu, Z. H.; Huang, J. L.; Yun, J. S.; Zeng, Y. Y.; Pu, A. B.; Sun, K. W.; Hameiri, Z. et al. Exploring inorganic binary alkaline halide to passivate defects in low-temperature-processed planar-structure hybrid perovskite solar cells. Adv. Energy Mater. 2018, 8, 1800138.
Manders, J. R.; Tsang, S. W.; Hartel, M. J.; Lai, T. H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-processed nickel oxide hole transport layers in high efficiency polymer photovoltaic cells. Adv. Funct. Mater. 2013, 23, 2993–3001.
Chen, C. L.; Zhang, S. S.; Wu, S. H.; Zhang, W. J.; Zhu, H. M.; Xiong, Z. Z.; Zhang, Y. J.; Chen, W. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 2017, 7, 35819–35826.
Hu, Q.; Wu, J.; Jiang, C.; Liu, T. H.; Que, X. L.; Zhu, R.; Gong, Q. H. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS Nano 2014, 8, 10161–10167.
Wang, K.; Zhao, W. J.; Liu, J.; Niu, J. Z.; Liu, Y. C.; Ren, X. D.; Feng, J. S.; Liu, Z. K.; Sun, J.; Wang, D. P. et al. CO2 plasma-treated TiO2 film as an effective electron transport layer for high-performance planar perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 33989–33996.
Wang, P. Y.; Zhang, X. W.; Zhou, Y. Q.; Jiang, Q.; Ye, Q. F.; Chu, Z. M.; Li, X. X.; Yang, X. L.; Yin, Z. G.; You, J. B. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 2018, 9, 2225.
Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988.
Li, W.; Sun, Y. Y.; Li, L. Q.; Zhou, Z. H.; Tang, J. F.; Prezhdo, O. V. Control of charge recombination in perovskites by oxidation state of halide vacancy. J. Am. Chem. Soc. 2018, 140, 15753–15763.
Zheng, X. P.; Chen, B.; Dai, J.; Fang, Y. J.; Bai, Y.; Lin, Y. Z.; Wei, H. T.; Zeng, X. C.; Huang, J. S. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2, 17102.
Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.
Li, M. J.; Li, B.; Cao, G. Z.; Tian, J. J. Monolithic MAPbI3 films for high-efficiency solar cells via coordination and a heat assisted process. J. Mater. Chem. A 2017, 5, 21313–21319.
Osorio-Guillén, J.; Lany, S.; Barabash, S. V.; Zunger, A. Nonstoichiometry as a source of magnetism in otherwise nonmagnetic oxides: Magnetically interacting cation vacancies and their percolation. Phys. Rev. B 2007, 75, 184421.
Langell, M. A.; Nassir, M. H. Stabilization of NiO(111) thin films by surface hydroxyls. J. Phys. Chem. 1995, 99, 4162–4169.
Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for near-surface NiOOH species in solution-processed NiOX selective interlayer materials: Impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chem. Mater. 2011, 23, 4988–5000.
Zhu, Z. L.; Bai, Y.; Zhang, T.; Liu, Z. K.; Long, X.; Wei, Z. H.; Wang, Z. L.; Zhang, L. X.; Wang, J. N.; Yan, F. et al. High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem., Int. Ed. 2014, 53, 12571–12575.
Qiu, Z. W.; Gong, H. B.; Zheng, G. H. J.; Yuan, S.; Zhang, H. L.; Zhu, X. M.; Zhou, H. P.; Cao, B. Q. Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. J. Mater. Chem. C 2017, 5, 7084–7094.
Mrowec, S.; Grzesik, Z. Oxidation of nickel and transport properties of nickel oxide. J. Phys. Chem. Solids 2004, 65, 1651–1657.
Zhang, K. H. L.; Xi, K.; Blamire, M. G.; Egdell, R. G. P-type transparent conducting oxides. J. Phys. Condens. Matter. 2016, 28, 383002.
Cahen, D.; Kahn, A. Electron energetics at surfaces and interfaces: Concepts and experiments. Adv. Mater. 2003, 15, 271–277.
Hameiri, Z.; Soufiani, A. M.; Juhl, M. K.; Jiang, L. C.; Huang, F. Z.; Cheng, Y. B.; Kampwerth, H.; Weber, J. W.; Green, M. A.; Trupke, T. Photoluminescence and electroluminescence imaging of perovskite solar cells. Prog. Photovoltaics 2015, 23, 1697–1705.
Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci. 2015, 8, 995–1004.
Hu, W. P.; Zhou, W. R.; Lei, X. Y.; Zhou, P. C.; Zhang, M. M.; Chen, T.; Zeng, H. L.; Zhu, J.; Dai, S. Y.; Yang, S. H. et al. Low-temperature in situ amino functionalization of TiO2 nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells. Adv. Mater. 2019, 31, 1806095.
Singh, T.; Miyasaka, T. Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity. Adv. Energy Mater. 2018, 8, 1700677.
Kim, J.; Kim, G.; Kim, T. K.; Kwon, S.; Back, H.; Lee, J.; Lee, S. H.; Kang, H.; Lee, K. Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer. J. Mater. Chem. A 2014, 2, 17291–17296.
Zhu, H. M.; Huang, B. Y.; Wu, S. H.; Xiong, Z. Z.; Li, J. Y.; Chen, W. Facile surface modification of CH3NH3PbI3 films leading to simultaneously improved efficiency and stability of inverted perovskite solar cells. J. Mater. Chem. A 2018, 6, 6255–6264.
Wei, Z. H.; Chen, H. N.; Yan, K. Y.; Zheng, X. L.; Yang, S. H. Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J. Mater. Chem. A 2015, 3, 24226–24231.