AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance

Hui Wang1,§Jingjing Cao1,§Yunjie Zhou1Xiao Wang1Hui Huang1Yang Liu1( )Mingwang Shao1Zhenhui Kang1,2( )
Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University, 199 Ren'ai Road Suzhou 215123 China
Macau Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 Macau SAR, China

§ Hui Wang and Jingjing Cao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The energy crisis has always been a widely concerned problem. It is an urgent need for green and renewable energy technologies to achieve sustainable development, and the photo-assisted charging energy storage devices provide a new way to realize the sustainable utilization of solar energy. Here, we fabricated a photo-assisted charging fibrous supercapacitor (NM2P1) with Ti3C2Tx-based hybrid fibre modified by nitrogen-doped carbon dots (NCDs). The NM2P1 fibre provides a volumetric capacitance of 1, 445 F·cm-3 (630 F·g-1) at 10 A·cm-3 under photo-assisted charging, which increases by 35.9% than that of dark condition (1, 063 F·cm-3/ 464 F·g-1). Furthermore, the NM2P1 fibrous supercapacitor device shows that the maximum volumetric energy density and volumetric power density are 18.75 mWh·cm-3 and 8, 382 mW·cm-3. Notably, the transient photovoltage (TPV) test was used to further confirm that NCDs as a photosensitizer enhance the light absorption capacity and faster charge transfer kinetics of NM2P1 fibre. This work directly exploits solar energy to improve the overall performance of supercapacitor, which opens up opportunities for the utilization of renewable energy and the development of photosensitive energy equipment.

Electronic Supplementary Material

Download File(s)
12274_2021_3309_MOESM1_ESM.pdf (3 MB)

References

1

Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

2

Irishika, D.; Onitsuka, Y.; Imamura, K.; Kobayashi, H. Improvement of conversion efficiency of silicon solar cells by submicron-textured rear reflector obtained by metal-assisted chemical etching. Sol. RRL 2017, 1, 1700061.

3

Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244.

4

Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629–634.

5

Liang, J.; Zhu, G. Y.; Lu, Z. P.; Zhao, P. Y.; Wang, C. X.; Ma, Y.; Xu, Z. R.; Wang, Y. R.; Hu, Y.; Ma, L. B. et al. Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. J. Mater. Chem. A 2018, 6, 2047–2052.

6

Xu, X. B.; Li, S. H.; Zhang, H.; Shen, Y.; Zakeeruddin, S. M.; Graetzel, M.; Cheng, Y. B.; Wang, M. K. A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 2015, 9, 1782–1787.

7

Yu, M. Z; McCulloch, W. D.; Beauchamp, D. R.; Huang, Z. J.; Ren, X. D.; Wu, Y. Y. Aqueous lithium-iodine solar flow battery for the simultaneous conversion and storage of solar energy. J. Am. Chem. Soc. 2015, 137, 8332–8335.

8

Xu, J. T.; Chen, Y. H.; Dai, L. M. Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat. Commun. 2015, 6, 8103.

9

Xu, J.; Ku, Z. L.; Zhang, Y. Q.; Chao, D. L.; Fan, H. J. Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 2016, 1, 1600074.

10

Liao, S. C.; Zong, X.; Seger, B.; Pedersen, T.; Yao, T. T.; Ding, C. M.; Shi, J. Y.; Chen, J.; Li, C. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nat. Commun. 2016, 7, 11474.

11

Liang, J.; Zhu, G. Y.; Wang, C. X.; Wang, Y. R.; Zhu, H. F.; Hu, Y.; Lv, H. L.; Chen, R. P.; Ma, L. B.; Chen, T. et al. MoS2-based all-purpose fibrous electrode and self-powering energy fiber for efficient energy harvesting and storage. Adv. Energy Mater. 2017, 7, 1601208.

12

Sun, Y. L.; Yan, X. B. Recent advances in dual-functional devices integrating solar cells and supercapacitors. Sol. RRL 2017, 1, 1700002.

13

Du, P. C.; Hu, X. W.; Yi, C.; Liu, H. C.; Liu, P.; Zhang, H. L.; Gong, X. Self-powered electronics by integration of flexible solid-state graphene-based supercapacitors with high performance perovskite hybrid solar cells. Adv. Funct. Mater. 2015, 25, 2420–2427.

14

He, W. D.; Liang, Z. F.; Ji, K. Y.; Sun, Q. F.; Zhai, T. Y.; Xu, X. J. Hierarchical Ni-Co-S@Ni-W-O core-shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors. Nano Res. 2018, 11, 1415–1425.

15

Li, Q.; Li, N.; Liu, Y.; Wang, Y. R.; Zhou, H. S. High-safety and low-cost photoassisted chargeable aqueous sodium-ion batteries with 90% input electric energy savings. Adv. Energy Mater. 2016, 6, 1600632.

16

Li, N.; Wang, Y. R.; Tang, D. M.; Zhou, H. S. Integrating a photocatalyst into a hybrid lithium-sulfur battery for direct storage of solar energy. Angew. Chem. , Int. Ed. 2015, 54, 9271–9274.

17

Yu, M. Z.; Ren, X. D.; Ma, L.; Wu, Y. Y. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. Nat. Commun. 2014, 5, 5111.

18

Schmidt, D.; Hager, M. D.; Schubert, U. S. Photo-rechargeable electric energy storage systems. Adv. Energy Mater. 2016, 6, 1500369.

19

Wang, L. L.; Wang, Y. R.; Qiao, Y.; Wu, S. C.; Lu, X. Z.; Zhu, J. J.; Zhang, J. R.; Zhou, H. S. Superior efficient rechargeable lithium-air batteries using a bifunctional biological enzyme catalyst. Energy Environ. Sci. 2020, 13, 144–151.

20

An, C. H.; Wang, Z. F.; Xi, W.; Wang, K.; Liu, X. Z.; Ding, Y. Nanoporous Cu@Cu2O hybrid arrays enable photo-assisted supercapacitor with enhanced capacities. J. Mater. Chem. A 2019, 7, 15691–15697.

21

Liu, Y.; Li, N.; Wu, S. C.; Liao, K. M.; Zhu, K.; Yi, J.; Zhou, H. S. Reducing the charging voltage of a Li-O2 battery to 1.9 V by incorporating a photocatalyst. Energy Environ. Sci. 2015, 8, 2664– 2667.

22

Wang, X. F.; Sun, K. M.; Li, K.; Li, X.; Gogotsi, Y. Ti3C2Tx/PEDOT: PSS hybrid materials for room-temperature methanol sensor. Chin. Chem. Lett. 2020, 31, 1018–1021.

23

Wang, H.; Wu, Y.; Yuan, X. Z.; Zeng, G. M.; Zhou, J.; Wang, X.; Chew, J. W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561.

24

Gao, Y. J.; Cao, Y. Y.; Gu, Y. B.; Zhuo, H.; Zhuang, G. L.; Deng, S. W.; Zhong, X.; Wei, Z. Z.; Chen, J. H.; Pan, X. et al. Functionalization Ti3C2 MXene by the adsorption or substitution of single metal atom. Appl. Surf. Sci. 2019, 465, 911–918.

25

Kumar, H.; Frey, N. C.; Dong, L.; Anasori, B.; Gogotsi, Y.; Shenoy, V. B. Tunable magnetism and transport properties in nitride MXenes. ACS Nano 2017, 11, 7648–7655.

26

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

27

Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

28

Cheng, S. H.; Weng, T. M.; Lu, M. L.; Tan, W. C.; Chen, J. Y.; Chen, Y. F. All carbon-based photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene. Sci. Rep. 2013, 3, 2694.

29

Kim, Y. R.; Jo, Y. E.; Shin, Y. S.; Kang, W. T.; Sung, Y. H.; Won, U. Y.; Lee, Y. H.; Yu, W. J. Electrostatically transparent graphene quantum-dot trap layers for efficient nonvolatile memory. Appl. Phys. Lett. 2015, 106, 103105.

30

Wang, Z.; Cao, L. J.; Ding, Y. M.; Shi, R.; Wang, X. J.; Lu, H.; Liu, Z. D.; Xiu, F.; Liu, J. Q.; Huang, W. One-step and green synthesis of nitrogen-doped carbon quantum dots for multifunctional electronics. RSC Adv. 2017, 7, 21969–21973.

31

Luo, H.; Dimitrov, S.; Daboczi, M.; Kim, J. S.; Guo, Q.; Fang, Y. X.; Stoeckel, M. A.; Samorì, P.; Fenwick, O.; Jorge Sobrido, A. B. et al. Nitrogen-doped carbon dots/TiO2 nanoparticle composites for photoelectrochemical water oxidation. ACS Appl. Nano Mater. 2020, 3, 3371–3381.

32

Chen, P.; Wang, F. L.; Chen, Z. F.; Zhang, Q. X.; Su, Y. H.; Shen, L. Z.; Yao, K.; Liu, Y.; Cai, Z. W.; Lv, W. Y. et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: The significant roles of reactive oxygen species. Appl. Catal. B Environ. 2017, 204, 250–259.

33

Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P. Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2014, 2, 6954–6960.

34

Holá, K.; Sudolská, M.; Kalytchuk, S.; Nachtigallová, D.; Rogach, A. L.; Otyepka, M.; Zbořil, R. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 2017, 11, 12402–12410.

35

Zhang, J. Z.; Seyedin, S.; Qin, S.; Wang, Z. Y.; Moradi, S.; Yang, F. L.; Lynch, P. A.; Yang, W. R.; Liu, J. Q.; Wang, X. G. et al. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 2019, 15, 1804732.

36

Zhu, C.; Li, H.; Wang, H. B.; Yao, B. W.; Huang, H.; Liu, Y.; Kang, Z. H. Negatively charged carbon nanodots with bacteria resistance ability for high-performance antibiofilm formation and anticorrosion coating design. Small 2019, 15, 1900007.

37

Li, Y. M.; Shi, J. J.; Yu, B. C.; Duan, B. W.; Wu, J. H.; Li, H. S.; Li, D. M.; Luo, Y. H.; Wu, H. J.; Meng, Q. B. Exploiting electrical transients to quantify charge loss in solar cells. Joule 2020, 4, 472–489.

38

Li, Y.; Zhao, Y. J.; Nie, H. D.; Wei, K. Q.; Cao, J. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production. J. Mater. Chem. A 2021, 9, 515–522.

39

Zhao, Y.; Li, C. Y.; Song, F. X.; Li, Y.; Liu, Y.; Zhao, Y. J.; Zhang, X. H.; Zhao, Y.; Kang, Z. H. All-in-one, solid-state, solar-powered electrochemical cell. ACS Appl. Mater. Interfaces 2020, 12, 57182– 57189.

40

Wang, H.; Cao, J. J.; Zhou, Y. J.; Wang, Z. Z.; Zhao, Y. J.; Liu, Y.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Carbon dot-modified mesoporous carbon as a supercapacitor with enhanced light-assisted capacitance. Nanoscale 2020, 12, 17925–17930.

41

Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.

42

Zhu, C.; Zhu, M. M.; Sun, Y.; Zhou, Y. J.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Liu, Y.; Kang, Z. H. Defects induced efficient overall water splitting on a carbon-based metal-free photocatalyst. Appl. Catal. B Environ. 2018, 237, 166–174.

43

Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride (MXene) @polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.

44

Wang, Q. W.; Zhang, H. B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L. X.; Yang, R.; Koratkar, N.; Yu, Z. Z. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and Joule heating performances. Adv. Funct. Mater. 2019, 29, 1806819.

45

Li, L.; Zhang, N.; Zhang, M. Y.; Zhang, X. T.; Zhang, Z. G. Flexible Ti3C2Tx/PEDOT: PSS films with outstanding volumetric capacitance for asymmetric supercapacitors. Dalton Trans. 2019, 48, 1747–1756.

46

Lukatskaya, M. R.; Bak, S. M.; Yu, X. Q.; Yang, X. Q.; Barsoum, M. W.; Gogotsi, Y. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 2015, 5, 1500589.

47

Lu, M.; Zhang, Z. Y.; Kang, L. P.; He, X. X.; Li, Q.; Sun, J.; Jiang, R. B.; Xu, H.; Shi, F.; Lei, Z. B. et al. Intercalation and delamination behavior of Ti3C2Tx and MnO2/Ti3C2Tx/RGO flexible fibers with high volumetric capacitance. J. Mater. Chem. A 3, 7, 12582–12592.

48

Wang, J. G.; Zhang, Z. Y.; Zhang, X. Y.; Yin, X. M.; Li, X.; Liu, X. R.; Kang, F. Y.; Wei, B. Q. Cation exchange formation of Prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 2017, 39, 647–653.

49

Wang, J. G.; Liu, H. Z.; Sun, H. H.; Hua, W.; Wang, H. W.; Liu, X. R.; Wei, B. Q. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 2018, 127, 85–92.

50

Tian, Y. P.; Yang, C. H.; Que, W. X.; Liu, X. B.; Yin, X. T.; Kong, L. B. Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. J. Power Sources 2017, 359, 332–339.

51

Hu, H. B.; Hua, T. An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors. J. Mater. Chem. A 2017, 5, 19639–19648.

52

Li, J. M.; Levitt, A.; Kurra, N.; Juan, K.; Noriega, N.; Xiao, X.; Wang, X. H.; Wang, H. Z.; Alshareef, H. N.; Gogotsi, Y. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater. 2019, 20, 455–461.

Nano Research
Pages 3886-3892
Cite this article:
Wang H, Cao J, Zhou Y, et al. Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance. Nano Research, 2021, 14(11): 3886-3892. https://doi.org/10.1007/s12274-021-3309-z
Topics:

923

Views

40

Crossref

44

Web of Science

43

Scopus

0

CSCD

Altmetrics

Received: 08 November 2020
Revised: 27 December 2020
Accepted: 03 January 2021
Published: 23 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return