AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Perspective Review

Cornerstone of molecular spintronics: Strategies for reliable organic spin valves

Shuaishuai Ding1,3,4Yuan Tian2( )Wenping Hu1,3,4( )
Tianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of Chemistry, School of Sciences, Tianjin UniversityTianjin300072China
School of Physics & ElectronicsHunan UniversityHunan410082China
Collaborative Innovation Center of Chemical Science and EngineeringTianjin300072China
Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin University, Binhai New CityFuzhou350207China
Show Author Information

Graphical Abstract

Abstract

Organic spin valve (OSV), one of the most promising and representative devices involving spin injection, transport and detection, has drawn tremendous attention owing to their ultra-long spin relaxation time in the field of molecular spintronics. Since the first demonstration of truly worked vertical OSV device in 2004, efforts in enhancement of high performance and pursuit of spin-related nature have been devoted in related field. It offers a new opportunity to develop the integrated flexible multi-functional arrays based on spintronics in the future. However, the unreliable working state in OSVs due to the lack of exploration on interface control will cause severe impact on the performance evaluation and further restrict their practical application. Herein, we focus on the recent progress in strategies for reliable fabrication and evaluation of typical OSVs in vertical configuration. Firstly, the challenges in protection of two spin interface properties and identification of spin-valve-like signals were proposed. Then, three points for attention including selection of bottom electrodes, optimization of organic spacer, and prevention of metal penetration to improve the device performance and reliability were mentioned. Particularly, various modified strategies to solve the "dead layer" issue were highlighted. Furthermore, we discussed the general protocols in the reliable evaluation of OSVs' performance and transport mechanism identification. Notably, several key fundamentals resulting in spurious magnetoresistance (MR) response were illustrated. Finally, we also highlighted the future perspectives on spintronic devices of organic materials.

References

1

Dong, H. L.; Hu, W. P. Multilevel investigation of charge transport in conjugated polymers. Acc. Chem. Res. 2016, 49, 2435–2443.

2

Jang, H. J.; Richter, C. A. Organic spin-valves and beyond: Spin injection and transport in organic semiconductors and the effect of interfacial engineering. Adv. Mater. 2017, 29, 1602739.

3

Ni, Z. J.; Wang, H. L.; Dong, H. L.; Dang, Y. F.; Zhao, Q.; Zhang, X. T.; Hu, W. P. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nat. Chem. 2019, 11, 271–277.

4

Liu, J.; Zhang, H. T.; Dong, H. L.; Meng, L. Q.; Jiang, L. F.; Jiang, L.; Wang, Y.; Yu, J. S.; Sun, Y. M.; Hu, W. P. et al. High mobility emissive organic semiconductor. Nat. Commun. 2015, 6, 10032.

5

Zhu, X. H.; Peng, J. B.; Cao, Y.; Roncali, J. Solution-processable single-material molecular emitters for organic light-emitting devices. Chem. Soc. Rev. 2011, 40, 3509–3524.

6

Zhang, D. W.; Li, M.; Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331–1343.

7

Wang, C. L.; Dong, H. L.; Jiang, L.; Hu, W. P. Organic semiconductor crystals. Chem. Soc. Rev. 2018, 47, 422–500.

8

Liu, J. Y.; Qin, Z. S.; Gao, H. K.; Dong, H. L.; Zhu, J.; Hu, W. P. Vertical organic field-effect transistors. Adv. Funct. Mater. 2019, 29, 1808453.

9

Ren, X. C.; Yang, F. X.; Gao, X.; Cheng, S. S.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic field-effect transistor for energy-related applications: Low-power-consumption devices, near-infrared phototransistors, and organic thermoelectric devices. Adv. Energy Mater. 2018, 8, 1801003.

10

Liu, J.; Jiang, L.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Monolayer organic field-effect transistors. Sci. China Chem. 2019, 62, 313–330.

11

Qian, J.; Jiang, S.; Li, S. L.; Wang, X. R.; Shi, Y.; Li, Y. Solution-processed 2D molecular crystals: Fabrication techniques, transistor applications, and physics. Adv. Mater. Technol. 2019, 4, 1800182.

12

Wei, P.; Li, S. T.; Li, D. F.; Yu, H.; Wang, X. D.; Xu, C. C.; Yang, Y. D.; Bu, L. J.; Lu, G. H. Organic-semiconductor: Polymer-electret blends for high-performance transistors. Nano Res. 2018, 11, 5835–5848.

13

Wang, W.; Lu, B.; Deng, W.; Zhang, X. J.; Lu, Z. J.; Wu, D.; Jie, J. S.; Zhang, X. H. Controlled 2D growth of organic semiconductor crystals by suppressing "coffee-ring" effect. Nano Res. 2020, 13, 2478–2484.

14

Bessette, A.; Hanan, G. S. Design, synthesis and photophysical studies of dipyrromethene-based materials: Insights into their applications in organic photovoltaic devices. Chem. Soc. Rev. 2014, 43, 3342–3405.

15

Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.; McCulloch, I. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 2019, 48, 1596–1625.

16

Li, J.; Zhou, K.; Liu, J.; Zhen, Y. G.; Liu, L.; Zhang, J. D.; Dong, H. L.; Zhang, X. T.; Jiang, L.; Hu, W. P. Aromatic extension at 2, 6-positions of anthracene toward an elegant strategy for organic semiconductors with efficient charge transport and strong solid state emission. J. Am. Chem. Soc. 2017, 139, 17261–17264.

17

Zheng, L.; Li, J. F.; Zhou, K.; Yu, X. X.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Molecular-scale integrated multi-functions for organic light-emitting transistors. Nano Res. 2020, 13, 1976–1981.

18

Qin, Z. S.; Gao, H. K.; Liu, J. Y.; Zhou, K.; Li, J.; Dang, Y. Y.; Huang, L.; Deng, H. X.; Zhang, X. T.; Dong, H. L. et al. High-efficiency single-component organic light-emitting transistors. Adv. Mater. 2019, 31, 1903175.

19

Liu, D.; De, J. B.; Gao, H. K.; Ma, S. Q.; Ou, Q.; Li, S.; Qin, Z. S.; Dong, H. L.; Liao, Q.; Xu, B. et al. Organic laser molecule with high mobility, high photoluminescence quantum yield, and deep-blue lasing characteristics. J. Am. Chem. Soc. 2020, 142, 6332–6339.

20

Ren, X. C.; Pei, K.; Peng, B. Y.; Zhang, Z. C.; Wang, Z. R.; Wang, X. Y.; Chan, P. K. L. A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Adv. Mater. 2016, 28, 4832–4838.

21

Wang, H. L.; Zhao, Q.; Ni, Z. J.; Li, Q. Y.; Liu, H. T.; Yang, Y. C.; Wang, L. F.; Ran, Y.; Guo, Y. L.; Hu, W. P. et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 2018, 30, 1803961.

22

Wang, H. L.; Liu, H. T.; Zhao, Q.; Cheng, C.; Hu, W. P.; Liu, Y. Q. Three-component integrated ultrathin organic photosensors for plastic optoelectronics. Adv. Mater. 2016, 28, 624–630.

23

Zhao, Q.; Wang, H. L.; Ni, Z. J.; Liu, J.; Zhen, Y. G.; Zhang, X. T.; Jiang, L.; Li, R. J.; Dong, H. L.; Hu, W. P. Organic ferroelectric-based 1T1T random access memory cell employing a common dielectric layer overcoming the half-selection problem. Adv. Mater. 2017, 29, 1701907.

24

Wang, Y.; Sun, L. J.; Wang, C.; Yang, F. X.; Ren, X. C.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 2019, 48, 1492–1530.

25

Yang, F. X.; Cheng, S. S.; Zhang, X. T.; Ren, X. C.; Li, R. J.; Dong, H. L.; Hu, W. P. 2D organic materials for optoelectronic applications. Adv. Mater. 2018, 30, 1702415.

26

Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic semiconductor single crystals for electronics and photonics. Adv. Mater. 2018, 30, 1801048.

27

Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 2020, 19, 491–502.

28

Ding, S. S.; Tian, Y.; Wang, H. L.; Zhou, Z.; Mi, W. B.; Ni, Z. J.; Zou, Y.; Dong, H. L.; Gao, H. J.; Zhu, D. B. et al. Reliable spin valves of conjugated polymer based on mechanically transferrable top electrodes. ACS Nano 2018, 12, 12657–12664.

29

Sun, X. N.; Bedoya-Pinto, A.; Llopis, R.; Casanova, F.; Hueso, L. E. Flexible semi-transparent organic spin valve based on bathocuproine. Appl. Phys. Lett. 2014, 105, 083302.

30

Sanvito, S.; Rocha, A. R. Molecular-spintronics: The art of driving spin through molecules. J. Comput. Theor. Nanos. 2006, 3, 624–642.

31

Krinichnyi, V. I.; Chemerisov, S. D.; Lebedev, Y. S. EPR and charge-transport studies of polyaniline. Phys. Rev. B 1997, 55, 16233–16244.

32

Tsurumi, J.; Matsui, H.; Kubo, T.; Häusermann, R.; Mitsui, C.; Okamoto, T.; Watanabe, S.; Takeya, J. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. Nat. Phys. 2017, 13, 994–998.

33

Jiang, S. W.; Yue, F. J.; Wang, S.; Wu, D. Recent advances in spin transport in organic semiconductors. Sci. China Phys. Mech. Astron. 2013, 56, 142–150.

34

Schott, S.; Chopra, U.; Lemaur, V.; Melnyk, A.; Olivier, Y.; Di Pietro, R.; Romanov, I.; Carey, R. L.; Jiao, X. C.; Jellett, C. et al. Polaron spin dynamics in high-mobility polymeric semiconductors. Nat. Phys. 2019, 15, 814–822.

35

Barraud, C.; Seneor, P.; Mattana, R.; Fusil, S.; Bouzehouane, K.; Deranlot, C.; Graziosi, P.; Hueso, L.; Bergenti, I.; Dediu, V. et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nat. Phys. 2010, 6, 615–620.

36

Bedoya-Pinto, A.; Miralles, S. G.; Vélez, S.; Atxabal, A.; Gargiani, P.; Valvidares, M.; Casanova, F.; Coronado, E.; Hueso, L. E. Interface-assisted sign inversion of magnetoresistance in spin valves based on novel lanthanide quinoline molecules. Adv. Funct. Mater. 2018, 28, 1702099.

37

Droghetti, A.; Thielen, P.; Rungger, I.; Haag, N.; Großmann, N.; Stöckl, J.; Stadtmüller, B.; Aeschlimann, M.; Sanvito, S.; Cinchetti, M. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules. Nat. Commun. 2016, 7, 12668.

38

Sun, M. F.; Mi, W. B. Progress in organic molecular/ferromagnet spinterfaces: Towards molecular spintronics. J. Mater. Chem. C 2018, 6, 6619–6636.

39

Galbiati, M.; Tatay, S.; Barraud, C.; Dediu, A. V.; Petroff, F.; Mattana, R.; Seneor, P. Spinterface: Crafting spintronics at the molecular scale. MRS Bull. 2014, 39, 602–607.

40

Cinchetti, M.; Dediu, V. A.; Hueso, L. E. Activating the molecular spinterface. Nat. Mater. 2017, 16, 507–515.

41

Forment-Aliaga, A.; Coronado, E. Hybrid interfaces in molecular spintronics. Chem. Rec. 2018, 18, 737–748.

42

Liang, S. H.; Yang, H. X.; Yang, H. W.; Tao, B. S.; Djeffal, A.; Chshiev, M.; Huang, W. C.; Li, X. G.; Ferri, A.; Desfeux, R. et al. Ferroelectric control of organic/ferromagnetic spinterface. Adv. Mater. 2016, 28, 10204–10210.

43

Coronado, E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 2020, 5, 87–104.

44

Guo, L. D.; Gu, X. R.; Zhu, X. W.; Sun, X. N. Recent advances in molecular spintronics: Multifunctional spintronic devices. Adv. Mater. 2019, 31, 1805355.

45

Sun, X. N.; Bedoya-Pinto, A.; Mao, Z. P.; Gobbi, M.; Yan, W. J.; Guo, Y. L.; Atxabal, A.; Llopis, R.; Yu, G.; Liu, Y. Q. et al. Active morphology control for concomitant long distance spin transport and photoresponse in a single organic device. Adv. Mater. 2016, 28, 2609–2615.

46

Sun, X. N.; Vélez, S.; Atxabal, A.; Bedoya-Pinto, A.; Parui, S.; Zhu, X. W.; Llopis, R.; Casanova, F.; Hueso, L. E. A molecular spin-photovoltaic device. Science 2017, 357, 677–680.

47

Nguyen, T. D.; Ehrenfreund, E.; Vardeny, Z. V. Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science 2012, 337, 204–209.

48

Prieto-Ruiz, J. P.; Miralles, S. G.; Prima-García, H.; López-Muñoz, A.; Riminucci, A.; Graziosi, P.; Aeschlimann, M.; Cinchetti, M.; Dediu, V. A.; Coronado, E. Enhancing light emission in interface engineered spin-oleds through spin-polarized injection at high voltages. Adv. Mater. 2019, 31, 1806817.

49

Watanabe, S.; Ando, K.; Kang, K.; Mooser, S.; Vaynzof, Y.; Kurebayashi, H.; Saitoh, E.; Sirringhaus, H. Polaron spin current transport in organic semiconductors. Nat. Phys. 2014, 10, 308–313.

50

Sun, D. L.; van Schooten, K. J.; Kavand, M.; Malissa, H.; Zhang, C.; Groesbeck, M.; Boehme, C.; Valy Vardeny, Z. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling. Nat. Mater. 2016, 15, 863–869.

51

Wang, S. J.; Venkateshvaran, D.; Mahani, M. R.; Chopra, U.; McNellis, E. R.; Di Pietro, R.; Schott, S.; Wittmann, A.; Schweicher, G.; Cubukcu, M. et al. Long spin diffusion lengths in doped conjugated polymers due to enhanced exchange coupling. Nat. Electron. 2019, 2, 98–107.

52

Devkota, J.; Geng, R. G.; Subedi, R. C.; Nguyen, T. D. Organic spin valves: A review. Adv. Funct. Mater. 2016, 26, 3881–3898.

53

Xiong, Z. H.; Wu, D.; Valy Vardeny, Z.; Shi, J. Giant magnetoresistance in organic spin-valves. Nature 2004, 427, 821–824.

54

Sun, D. L.; Ehrenfreund, E.; Valy Vardeny, Z. The first decade of organic spintronics research. Chem. Commun. 2014, 50, 1781–1793.

55

Ding, S. S.; Tian, Y.; Li, Y.; Mi, W. B.; Dong, H. L.; Zhang, X. T.; Hu, W. P.; Zhu, D. B. Inverse magnetoresistance in polymer spin valves. ACS Appl. Mater. Interfaces 2017, 9, 15644–15651.

56

Ciudad, D.; Gobbi, M.; Kinane, C. J.; Eich, M.; Moodera, J. S.; Hueso, L. E. Sign control of magnetoresistance through chemically engineered interfaces. Adv. Mater. 2014, 26, 7561–7567.

57

Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 1975, 54, 225–226.

58

Vinzelberg, H.; Schumann, J.; Elefant, D.; Gangineni, R. B.; Thomas, J.; Büchner, B. Low temperature tunneling magnetoresistance on (La, Sr) MnO3/Co junctions with organic spacer layers. J. Appl. Phys. 2008, 103, 093720.

59

Morley, N. A.; Rao, A.; Dhandapani, D.; Gibbs, M. R. J.; Grell, M.; Richardson, T. Room temperature organic spintronics. J. Appl. Phys. 2008, 103, 07F306.

60

Jiang, S. W.; Shu, D. J.; Lin, L.; Shi, Y. J.; Shi, J.; Ding, H. F.; Du, J.; Wang, M.; Wu, D. Strong asymmetrical bias dependence of magnetoresistance in organic spin valves: The role of ferromagnetic/organic interfaces. New J. Phys. 2014, 16, 013028.

61

Jiang, S. W.; Chen, B. B.; Wang, P.; Zhou, Y.; Shi, Y. J.; Yue, F. J.; Ding, H. F.; Wu, D. Voltage polarity manipulation of the magnetoresistance sign in organic spin valve devices. Appl. Phys. Lett. 2014, 104, 262402.

62

The interface is still the device. Nat. Mater. 2012, 11, 91.

63

Sidorenko, A. A.; Pernechele, C.; Lupo, P.; Ghidini, M.; Solzi, M.; De Renzi, R.; Bergenti, I.; Graziosi, P.; Dediu, V.; Hueso, L. et al. Interface effects on an ultrathin Co film in multilayers based on the organic semiconductor Alq3. Appl. Phys. Lett. 2010, 97, 162509.

64

Fourmental, C.; Bellec, A.; Repain, V.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Dappe, Y. J.; Vlad, A.; Resta, A. et al. Deep metallic interdiffusion in a model ferromagnetic/molecular system. Phys. Rev. Mater. 2019, 3, 083603.

65

Drew, A. J.; Szulczewski, G.; Nuccio, L.; Gillin, W. P. The role of interfaces in organic spin valves revealed through spectroscopic and transport measurements. Phys. Status Solidi B 2012, 249, 9–17.

66

Lach, S.; Altenhof, A.; Tarafder, K.; Schmitt, F.; Ali, M. E.; Vogel, M.; Sauther, J.; Oppeneer, P. M.; Ziegler, C. Metal-organic hybrid interface states of a ferromagnet/organic semiconductor hybrid junction as basis for engineering spin injection in organic spintronics. Adv. Funct. Mater. 2012, 22, 989–997.

67

Shi, S. W.; Sun, Z. Y.; Bedoya-Pinto, A.; Graziosi, P.; Li, X.; Liu, X. J.; Hueso, L.; Dediu, V. A.; Luo, Y.; Fahlman, M. Hybrid interface states and spin polarization at ferromagnetic metal-organic heterojunctions: Interface engineering for efficient spin injection in organic spintronics. Adv. Funct. Mater. 2014, 24, 4812–4821.

68

Rijks, T. G.; Coehoorn, R.; de Jong, M. J.; de Jonge, W. J. Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers. Phys. Rev. B 1995, 51, 283–291.

69

Kamiya, T.; Miyahara, C.; Tada, H. Large tunneling anisotropic magnetoresistance in La0.7Sr0.3MnO3/pentacene/Cu structures prepared on SrTiO3 (110) substrates. Appl. Phys. Lett. 2017, 110, 032401.

70

Grünewald, M.; Wahler, M.; Schumann, F.; Michelfeit, M.; Gould, C.; Schmidt, R.; Würthner, F.; Schmidt, G.; Molenkamp, L. W. Tunneling anisotropic magnetoresistance in organic spin valves. Phys. Rev. B 2011, 84, 125208.

71

Wang, K.; Sanderink, J. G. M.; Bolhuis, T.; van der Wiel, W. G.; de Jong, M. P. Tunneling anisotropic magnetoresistance in C60-based organic spintronic systems. Phys. Rev. B 2014, 89, 174419.

72

Ding, S. S.; Tian, Y.; Dong, H. L.; Zhu, D. B.; Hu, W. P. Anisotropic magnetoresistance in NiFe-based polymer spin valves. ACS Appl. Mater. Interfaces 2019, 11, 11654–11659.

73

Yang, W. T.; Shi, Q.; Miao, T.; Li, Q.; Cai, P.; Liu, H.; Lin, H. X.; Bai, Y.; Zhu, Y. Y.; Yu, Y. et al. Achieving large and nonvolatile tunable magnetoresistance in organic spin valves using electronic phase separated manganites. Nat. Commun. 2019, 10, 3877.

74

Ding, S. S.; Tian, Y.; Liu, X.; Zou, Y.; Dong, H. L.; Mi, W. B.; Hu, W. P. Unveiling the role of Fe3O4 in polymer spin valve near Verwey transition. Nano Res. 2021, 14, 304–310.

75

Groesbeck, M.; Liu, H. L.; Kavand, M.; Lafalce, E.; Wang, J. Y.; Pan, X.; Tennahewa, T. H.; Popli, H.; Malissa, H.; Boehme, C. et al. Separation of spin and charge transport in pristine π-conjugated polymers. Phys. Rev. Lett. 2020, 124, 067702.

76

Francis, T. L.; Mermer, Ö.; Veeraraghavan, G.; Wohlgenannt, M. Large magnetoresistance at room temperature in semiconducting polymer sandwich devices. New J. Phys. 2004, 6, 185.

77

Wagemans, W.; Janssen, P.; Schellekens, A. J.; Bloom, F. L.; Bobbert, P. A.; Koopmans, B. The many faces of organic magnetoresistance. Spin 2011, 1, 93–108.

78

Gao, N.; Li, L.; Lu, N. D.; Xie, C. Q.; Liu, M.; Bässler, H. Unified percolation model for bipolaron-assisted organic magnetoresistance in the unipolar transport regime. Phys. Rev. B 2016, 94, 075201.

79

Janssen, P.; Cox, M.; Wouters, S. H. W.; Kemerink, M.; Wienk, M. M.; Koopmans, B. Tuning organic magnetoresistance in polymer-fullerene blends by controlling spin reaction pathways. Nat. Commun. 2013, 4, 2286.

80

Nguyen, T. D.; Sheng, Y.; Rybicki, J.; Wohlgenannt, M. Magnetic field-effects in bipolar, almost hole-only and almost electron-only tris-(8-hydroxyquinoline) aluminum devices. Phys. Rev. B 2008, 77, 235209.

81

Harmon, N. J.; Flatté, M. E. Organic magnetoresistance from deep traps. J. Appl. Phys. 2014, 116, 043707.

82

Ding, S. S.; Tian, Y.; Li, Y.; Zhang, H. T.; Zhou, K.; Liu, J. Y.; Qin, L.; Zhang, X. X.; Qiu, X. H.; Dong, H. L. et al. Organic single-crystal spintronics: Magnetoresistance devices with high magnetic-field sensitivity. ACS Nano 2019, 13, 9491–9497.

83

Wang, F. J.; Macià, F.; Wohlgenannt, M.; Kent, A. D.; Flatté, M. E. Magnetic fringe-field control of electronic transport in an organic film. Phys. Rev. X 2012, 2, 021013.

84

Macià, F.; Wang, F. J.; Harmon, N. J.; Kent, A. D.; Wohlgenannt, M.; Flatté, M. E. Organic magnetoelectroluminescence for room temperature transduction between magnetic and optical information. Nat. Commun. 2014, 5, 3609.

85

Chen, B. B.; Zhou, Y.; Wang, S.; Shi, Y. J.; Ding, H. F.; Wu, D. Giant magnetoresistance enhancement at room-temperature in organic spin valves based on La0.67Sr0.33MnO3 electrodes. Appl. Phys. Lett. 2013, 103, 072402.

86

Park, J. H.; Vescovo, E.; Kim, H. J.; Kwon, C.; Ramesh, R.; Venkatesan, T. Magnetic properties at surface boundary of a half-metallic ferromagnet La0.7Sr0.3MnO3. Phys. Rev. Lett. 1998, 81, 1953–1956.

87

Felser, C.; Fecher, G. H.; Balke, B. Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem., Int. Ed. 2007, 46, 668–699.

88

Zhang, X. M.; Mizukami, S.; Kubota, T.; Ma, Q. L.; Oogane, M.; Naganuma, H.; Ando, Y.; Miyazaki, T. Observation of a large spin-dependent transport length in organic spin valves at room temperature. Nat. Commun. 2013, 4, 1392.

89

Li, H. S.; Li, X.; Kim, D.; Zhao, G. J.; Zhang, D. L.; Diao, Z. T.; Chen, T. Y.; Wang, J. P. High spin polarization in epitaxial Fe4N thin films using Cr and Ag as buffer layers. Appl. Phys. Lett. 2018, 112, 162407.

90

Li, Z. R.; Wang, X. C.; Dai, H. T.; Mi, W. B.; Bai, H. L. Spin dependent transport and magnetic properties in Fe4N/tris(8-hydroxyquinoline) aluminum/Co organic spin valves fabricated by facing-target sputtering. Thin Solid Films 2015, 588, 26–33.

91

Feng, N.; Mi, W. B.; Wang, X. C.; Bai, H. L. First-principles study on the interfacial magnetic and electronic properties of Fe4N(001)/Si and Fe4N(111)/graphene bilayers. Comput. Mater. Sci. 2015, 96, 256–262.

92

Kawasugi, Y.; Ujino, T.; Tada, H. Room-temperature magnetoresistance in organic spin-valves based on a Co2MnSi Heusler alloy. Org. Electron. 2013, 14, 3186–3189.

93

Lee, K. M.; Choi, J. W.; Sok, J.; Min, B. C. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO. AIP Adv. 2017, 7, 065107.

94

Huang, S. X.; Chen, T. Y.; Chien, C. L. Spin polarization of amorphous CoFeB determined by point-contact Andreev reflection. Appl. Phys. Lett. 2008, 92, 242509.

95

Schoonus, J. J. H. M.; Lumens, P. G. E.; Wagemans, W.; Kohlhepp, J. T.; Bobbert, P. A.; Swagten, H. J. M.; Koopmans, B. Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunneling. Phys. Rev. Lett. 2009, 103, 146601.

96

Uhrmann, T.; Dimopoulos, T.; Brückl, H.; Lazarov, V. K.; Kohn, A.; Paschen, U.; Weyers, S.; Bär, L.; Rührig, M. Characterization of embedded MgO/ferromagnet contacts for spin injection in silicon. J. Appl. Phys. 2008, 103, 063709.

97

Carlegrim, E.; Kanciurzewska, A.; de Jong, M. P.; Tengstedt, C.; Fahlman, M. The unoccupied electronic structure of the semi-conducting room temperature molecular magnet V(TCNE)2. Chem. Phys. Lett. 2008, 452, 173–177.

98

Yoo, J. W.; Chen, C. Y.; Jang, H. W.; Bark, C. W.; Prigodin, V. N.; Eom, C. B.; Epstein, A. J. Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 2010, 9, 638–642.

99

Shim, J. H.; Raman, K. V.; Park, Y. J.; Santos, T. S.; Miao, G. X.; Satpati, B.; Moodera, J. S. Large spin diffusion length in an amorphous organic semiconductor. Phys. Rev. Lett. 2008, 100, 226603.

100

Wang, W. D.; Yu, M. H.; Batzill, M.; He, J. B.; Diebold, U.; Tang, J. K. Enhanced tunneling magnetoresistance and high-spin polarization at room temperature in a polystyrene-coated Fe3O4 granular system. Phys. Rev. B 2006, 73, 134412.

101

Zhang, X. M.; Tong, J. W.; Zhu, H. E; Wang, Z. C; Zhou, L. Q; Wang, S. G; Miyashita, T.; Mitsuishi, M.; Qin, G. W. Room temperature magnetoresistance effects in ferroelectric poly(vinylidene fluoride) spin valves. J. Mater. Chem. C 2017, 5, 5055–5062.

102

Dey, P.; Rawat, R.; Potdar, S. R.; Choudhary, R. J.; Banerjee, A. Temperature driven transition from giant to tunneling magneto-resistance in Fe3O4/Alq3/Co spin Valve: Role of Verwey transition of Fe3O4. J. Appl. Phys. 2014, 115, 17C110.

103

Liang, S. H.; Geng, R. G.; Yang, B. S.; Zhao, W. B.; Chandra Subedi, R.; Li, X. G.; Han, X. F.; Nguyen, T. D. Curvature-enhanced spin-orbit coupling and spinterface effect in fullerene-based spin valves. Sci. Rep. 2016, 6, 19461.

104

Vetter, E.; Von Wald, I.; Yang, S. J.; Yan, L.; Koohfar, S.; Kumah, D.; Yu, Z. G.; You, W.; Sun, D. L. Tuning of spin-orbit coupling in metal-free conjugated polymers by structural conformation. Phys. Rev. Mater. 2020, 4, 085603.

105

Wittmann, A.; Schweicher, G.; Broch, K.; Novak, J.; Lami, V.; Cornil, D.; McNellis, E. R.; Zadvorna, O.; Venkateshvaran, D.; Takimiya, K. et al. Tuning spin current injection at ferromagnet-nonmagnet interfaces by molecular design. Phys. Rev. Lett. 2020, 124, 027204.

106

Zheng, Y. H.; Feng, Y. Q.; Gao, D.; Zheng, N. H.; Li, D.; Jiang, L. T.; Wang, X.; Jin, K. J.; Yu, G. Magnetoresistance and spinterface of organic spin valves based on diketopyrrolopyrrole polymers. Adv. Electron. Mater. 2019, 5, 1900318.

107

Nguyen, T. D.; Hukic-Markosian, G.; Wang, F. J.; Wojcik, L.; Li, X. G.; Ehrenfreund, E.; Valy Vardeny, Z. Isotope effect in spin response of π-conjugated polymer films and devices. Nat. Mater. 2010, 9, 345–352.

108

Geng, R. G.; Subedi, R. C.; Luong, H. M.; Pham, M. T.; Huang, W. C.; Li, X. G.; Hong, K. L.; Shao, M.; Xiao, K.; Hornak, L. A. et al. Effect of charge localization on the effective hyperfine interaction in organic semiconducting polymers. Phys. Rev. Lett. 2018, 120, 086602.

109

Tran, T. L. A.; Le, T. Q.; Sanderink, J. G. M.; van der Wiel, W. G.; de Jong, M. P. The multistep tunneling analogue of conductivity mismatch in organic spin valves. Adv. Funct. Mater. 2012, 22, 1180–1189.

110

Guo, L. D.; Qin, Y.; Gu, X. R.; Zhu, X. W.; Zhou, Q.; Sun, X. N. Spin transport in organic molecules. Front. Chem. 2019, 7, 428.

111

Schulz, L.; Nuccio, L.; Willis, M.; Desai, P.; Shakya, P.; Kreouzis, T.; Malik, V. K.; Bernhard, C.; Pratt, F. L.; Morley, N. A. et al. Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nat. Mater. 2011, 10, 39–44.

112

Borgatti, F.; Bergenti, I.; Bona, F.; Dediu, V.; Fondacaro, A.; Huotari, S.; Monaco, G.; MacLaren, D. A.; Chapman, J. N.; Panaccione, G. Understanding the role of tunneling barriers in organic spin valves by hard X-ray photoelectron spectroscopy. Appl. Phys. Lett. 2010, 96, 043306.

113

Sun, X. N.; Gobbi, M.; Bedoya-Pinto, A.; Txoperena, O.; Golmar, F.; Llopis, R.; Chuvilin, A.; Casanova, F.; Hueso, L. E. Room-temperature air-stable spin transport in bathocuproine-based spin valves. Nat. Commun. 2013, 4, 2794.

114

Sun, D. L.; Yin, L. F.; Sun, C. J.; Guo, H. W.; Gai, Z.; Zhang, X. G.; Ward, T. Z.; Cheng, Z. H.; Shen, J. Giant magnetoresistance in organic spin valves. Phys. Rev. Lett. 2010, 104, 236602.

115

Wang, S.; Shi, Y. J.; Lin, L.; Chen, B. B.; Yue, F. J.; Du, J.; Ding, H. F.; Zhang, F. M.; Wu, D. Room-temperature spin valve effects in La0.67Sr0.33MnO3/Alq3/Co devices. Synth. Met. 2011, 161, 1738–1741.

116

Tatay, S.; Barraud, C.; Galbiati, M.; Seneor, P.; Mattana, R.; Bouzehouane, K.; Deranlot, C.; Jacquet, E.; Forment-Aliaga, A.; Jegou, P. et al. Self-assembled monolayer-functionalized half-metallic manganite for molecular spintronics. ACS Nano 2012, 6, 8753–8757.

117
Galbiati, M. Molecular Spintronics: From Organic Semiconductors to Self-Assembled Monolayers; Springer: Cham, 2016.https://doi.org/10.1007/978-3-319-22611-8
118

Galbiati, M.; Barraud, C.; Tatay, S.; Bouzehouane, K.; Deranlot, C.; Jacquet, E.; Fert, A.; Seneor, P.; Mattana, R.; Petroff, F. Unveiling self-assembled monolayers' potential for molecular spintronics: Spin transport at high voltage. Adv. Mater. 2012, 24, 6429–6432.

119

Galbiati, M.; Tatay, S.; Delprat, S.; Le Khanh, H.; Servet, B.; Deranlot, C.; Collin, S.; Seneor, P.; Mattana, R.; Petroff, F. Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study. Appl. Phys. Lett. 2015, 106, 082408.

120

Barraud, C.; Bouzehouane, K.; Deranlot, C.; Fusil, S.; Jabbar, H.; Arabski, J.; Rakshit, R.; Kim, D. J.; Kieber, C.; Boukari, S. et al. Unidirectional spin-dependent molecule-ferromagnet hybridized states anisotropy in cobalt phthalocyanine based magnetic tunnel junctions. Phys. Rev. Lett. 2015, 114, 206603.

121

Barraud, C.; Bouzehouane, K.; Deranlot, C.; Kim, D. J.; Rakshit, R.; Shi, S.; Arabski, J.; Bowen, M.; Beaurepaire, E.; Boukari, S. et al. Phthalocyanine based molecular spintronic devices. Dalton Trans. 2016, 45, 16694–16699.

122

Wagemans, W.; Koopmans, B. Spin transport and magnetoresistance in organic semiconductors. Phys. Status Solidi B 2011, 248, 1029–1041.

123

Macià, F.; Wang, F.; Harmon, N. J.; Wohlgenannt, M.; Kent, A. D.; Flatté, M. E. Hysteretic control of organic conductance due to remanent magnetic fringe fields. Appl. Phys. Lett. 2013, 102, 042408.

124

Bairagi, K.; Romero, D. G.; Calavalle, F.; Catalano, S.; Zuccatti, E.; Llopis, R.; Casanova, F.; Hueso, L. E. Room-temperature operation of a p-type molecular spin photovoltaic device on a transparent substrate. Adv. Mater. 2020, 32, 1906908.

125

Li, F.; Li, T.; Chen, F.; Zhang, F. P. Excellent spin transport in spin valves based on the conjugated polymer with high carrier mobility. Sci. Rep. 2015, 5, 9355.

126

Yu, Z. G. Impurity-band transport in organic spin valves. Nat. Commun. 2014, 5, 4842.

127

Riminucci, A.; Yu, Z. G.; Prezioso, M.; Cecchini, R.; Bergenti, I.; Graziosi, P.; Dediu, V. A. Controlling magnetoresistance by oxygen impurities in Mq3-based molecular spin valves. ACS Appl. Mater. Interfaces 2019, 11, 8319–8326.

128

Grünewald, M.; Göckeritz, R.; Homonnay, N.; Würthner, F.; Molenkamp, L. W.; Schmidt, G. Vertical organic spin valves in perpendicular magnetic fields. Phys. Rev. B 2013, 88, 085319.

129

Kalinowski, J.; Cocchi, M.; Virgili, D.; Di Marco, P.; Fattori, V. Magnetic field effects on emission and current in Alq3-based electroluminescent diodes. Chem. Phys. Lett. 2003, 380, 710–715.

Nano Research
Pages 3653-3668
Cite this article:
Ding S, Tian Y, Hu W. Cornerstone of molecular spintronics: Strategies for reliable organic spin valves. Nano Research, 2021, 14(11): 3653-3668. https://doi.org/10.1007/s12274-021-3310-6
Topics:

912

Views

17

Crossref

20

Web of Science

18

Scopus

1

CSCD

Altmetrics

Received: 16 November 2020
Revised: 31 December 2020
Accepted: 03 January 2021
Published: 22 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return