Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Graphene quantum dots (GQDs), have unique quantum confinement effects, tunable bandgap and luminescence property, with a wide range of potential applications such as optoelectronic and biomedical areas. However, GQDs usually have a strong tendency toward aggregation especially in making solid films, which will degrade their optoelectronic properties, for example, causing undesired fluorescence quenching. Here, we designed a composite film by embedding GQDs in a polyvinyl pyrrolidone (PVP) matrix through hydrogen bonding with well-preserved fluorescence, with a small addition of acid for compensating the poor conductivity of PVP. As a multifunctional solid coating on carbon nanotube/silicon (CNT/Si) solar cells, the photon down-conversion by GQDs and the PVP anti-reflection layer for visible light lead to enhanced external quantum efficiency (by 12.34% in the ultraviolet (UV) range) and cell efficiency (up to 14.94%). Such advanced optical managing enabled by low-cost, carbon-based quantum dots, as demonstrated in our results, can be applied to more versatile optoelectronic and photovoltaic devices based on perovskites, organic and other materials.
Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M. Biological applications of quantum dots. Biomaterials 2007, 28, 4717–4732.
Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nature Photonics 2015, 9, 259–266.
Selopal, G. S.; Zhao, H. G.; Wang, Z. M.; Rosei, F. Core/shell quantum dots solar cells. Adv. Funct. Mater. 2020, 30, 1908762.
Gill, R.; Zayats, M.; Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem., Int. Ed. 2008, 47, 7602–7625.
Wang, F. Y.; Yang, M. F.; Ji, S. H.; Yang, L. L.; Zhao, J. L.; Liu, H. L.; Sui, Y. R.; Sun, Y. F.; Yang, J. H.; Zhang, X. D. Boosting spectral response of multi-crystalline Si solar cells with Mn2+ doped CsPbCl3 quantum dots downconverter. J. Power Sources 2018, 395, 85–91.
Jalalah, M.; Al-Assiri, M. S.; Park, J. G. One-pot gram-scale, eco-friendly, and cost-effective synthesis of CuGaS2/ZnS nanocrystals as efficient UV-harvesting down-converter for photovoltaics. Adv. Energy Mater. 2018, 8, 1703418.
Levchuk, I.; Würth, C.; Krause, F.; Osvet, A.; Batentschuk, M.; Resch-Genger, U.; Kolbeck, C.; Herre, P.; Steinrück, H. P.; Peukert, W. et al. Industrially scalable and cost-effective Mn2+ doped ZnxCd1−x S/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy Environ. Sci. 2016, 9, 1083–1094.
Lopez-Delgado, R.; Zhou, Y.; Zazueta-Raynaud, A.; Zhao, H.; Pelayo, J. E.; Vomiero, A.; Álvarez-Ramos, M. E.; Rosei, F.; Ayon, A. Enhanced conversion efficiency in Si solar cells employing photoluminescent down-shifting CdSe/CdS core/shell quantum dots. Sci. Rep. 2017, 7, 14104.
Liu, Q. W.; Sun, J. H.; Gao, K.; Chen, N.; Sun, X. T.; Ti, D.; Bai, C. C.; Cui, R. R.; Qu, L. T. Graphene quantum dots for energy storage and conversion: From fabrication to applications. Mater. Chem. Front. 2020, 4, 421–436.
Yan, Y. B.; Gong, J.; Chen, J.; Zeng, Z. P.; Huang, W.; Pu, K. Y.; Liu, J. Y.; Chen, P. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv. Mater. 2019, 31, 1808283.
Fang, X.; Ding, J. N.; Yuan, N. Y.; Sun, P.; Lv, M. H.; Ding, G. Q.; Zhu, C. Graphene quantum dot incorporated perovskite films: Passivating grain boundaries and facilitating electron extraction. Phys. Chem. Chem. Phys. 2017, 19, 6057–6063.
Zhu, Z. L.; Ma, J. N.; Wang, Z. L.; Mu, C.; Fan, Z. T.; Du, L. L.; Bai, Y.; Fan, L. Z.; Yan, H.; Phillips, D. L. et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: The role of graphene quantum dots. J. Am. Chem. Soc. 2014, 136, 3760–3763.
Diao, S. L.; Zhang, X. J.; Shao, Z. B.; Ding, K.; Jie, J. S.; Zhang, X. H. 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 2017, 31, 359–366.
Gao, P.; Ding, K.; Wang, Y.; Ruan, K. Q.; Diao, S. L.; Zhang, Q.; Sun, B. Q.; Jie, J. S. Crystalline Si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C 2014, 118, 5164–5171.
Tsai, M. L.; Wei, W. R.; Tang, L. B.; Chang, H. C.; Tai, S. H.; Yang, P. K.; Lau, S. P.; Chen, L. J.; He, J. H. Si hybrid solar cells with 13% efficiency via concurrent improvement in optical and electrical properties by employing graphene quantum dots. ACS Nano 2016, 10, 815–821.
Lee, K. D.; Park, M. J.; Kim, D. Y.; Kim, S. M.; Kang, B. J.; Kim, S.; Kim, H.; Lee, H. S.; Kang, Y.; Yoon, S. S. et al. Graphene quantum dot layers with energy-down-shift effect on crystalline-silicon solar cells. ACS Appl. Mater. Interfaces 2015, 7, 19043–19049.
Tsai, M. L.; Tu, W. C.; Tang, L. B.; Wei, T. C.; Wei, W. R.; Lau, S. P.; Chen, L. J.; He, J. H. Efficiency enhancement of silicon heterojunction solar cells via photon management using graphene quantum dot as downconverters. Nano Lett. 2016, 16, 309–313.
Sabetghadam, S. A.; Hosseini, Z.; Zarei, S.; Ghanbari, T. Improvement of the current generation in silicon solar cells by utilizing graphene quantum dot as spectral converter. Mater. Lett. 2020, 279, 128515.
Kovalchuk, A.; Huang, K. W.; Xiang, C. S.; Martí, A. A.; Tour, J. M. Luminescent polymer composite films containing coal-derived graphene quantum dots. ACS Appl. Mater. Interfaces 2015, 7, 26063–26068.
Ren, J. K.; Stagi, L.; Innocenzi, P. Fluorescent carbon dots in solid-state: From nanostructures to functional devices. Prog. Solid State Chem. 2020, 100295, https://doi.org/10.1016/j.progsolidstchem.2020.100295.
Zhu, J. Y.; Bai, X.; Zhai, Y.; Chen, X.; Zhu, Y. S.; Pan, G. C.; Zhang, H. Z.; Dong, B.; Song, H. W. Carbon dots with efficient solid-state photoluminescence towards white light-emitting diodes. J. Mater. Chem. C 2017, 5, 11416–11420.
Barman, B. K.; Nagao, T.; Nanda, K. K. Dual roles of a transparent polymer film containing dispersed N-doped carbon dots: A high-efficiency blue light converter and UV screen. Appl. Surf. Sci. 2020, 510, 145405.
Liu Y. Q.; Li Y. J.; Wu Y. L.; Yang G. T.; Mazzarella L.; Procel-Moya P.; Tamboli A. C.; Weber K.; Boccard M.; Isabella O. et al. High-efficiency silicon heterojunction solar cells: Materials, devices and applications. Mater. Sci. Eng. R Rep. 2020, 142, 100579.
Wang, L.; Wang, Y. L.; Xu, T.; Liao, H. B.; Yao, C. J.; Liu, Y.; Li, Z.; Chen, Z. W.; Pan, D. Y.; Sun, L. T. et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun. 2014, 5, 5357.
Wang, J. Y.; Yan, H.; Liu, Z. Q.; Wang, Z. C.; Gao, H. N.; Zhang, S. J.; Wang, B. L.; Xu, N.; Zhang, S. Q.; Liu X. J. et al. Langmuir-Blodgett self-assembly of ultrathin graphene quantum dot films with modulated optical properties. Nanoscale 2018, 10, 19612–19620.
Yang, S. W.; Sun, J.; Zhu, C.; He, P.; Peng, Z.; Ding, G. Q. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: Tunable selectivity for alkali and alkaline-earth metal ions. Analyst 2016, 141, 1052–1059.
Qin, H. Y.; Gong, T.; Jin, Y. H.; Cho, Y.; Shin, C.; Lee, C.; Kim, T. Near-UV-emitting graphene quantum dots from graphene hydrogels. Carbon 2015, 94, 181–188.
Wang, Z. J.; Zhao, X. J.; Guo, Z. Z.; Miao, P.; Gong, X. Carbon dots based nanocomposite thin film for highly efficient luminescent solar concentrators. Org. Electron. 2018, 62, 284–289.
Bai, H.; Li, C.; Wang, X. L.; Shi, G. Q. On the gelation of graphene oxide. J. Phys. Chem. C 2011, 115, 5545–5551.
Saini, P.; Sharma, B.; Singh, M.; Tandon, R. P.; Singh, S. P.; Mahapatro, A. K. Electrical properties of self sustained layer of graphene oxide and polyvinylpyriodine composite. Integr. Ferroelectrics 2019, 202, 197–203.
Zhang, T. X.; Zhu, J. Y.; Zhai, Y.; Wang, H.; Bai, X.; Dong, B.; Wang, H. Y.; Song, H. W. A novel mechanism for red emission carbon dots: Hydrogen bond dominated molecular states emission. Nanoscale 2017, 9, 13042–13051.
Jia, Y.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Shu, Q. K.; Gui, X. C.; Zhu, Y. Q.; Zhuang, D. M.; Zhang, G.; Ma, B. B. et al. Nanotube-silicon heterojunction solar cells. Adv. Mater. 2008, 20, 4594–4598.
Li, X.; Zang, X. B.; Li, X. M.; Zhu, M.; Chen, Q.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Zhu, H. W. Hybrid heterojunction and solid-state photoelectrochemical solar cells. Adv. Energy Mater. 2014, 4, 1400224.
Zang, X. B.; Chen, Q.; Li, P. X.; He, Y. J.; Li, X.; Zhu, M.; Li, X. M.; Wang, K. L.; Zhong, M. L.; Wu, D. H. et al. Highly flexible and adaptable, all-solid-state supercapacitors based on graphene woven-fabric film electrodes. Small 2014, 10, 2583–2588.
McIntosh, K. R.; Lau, G.; Cotsell, J. N.; Hanton, K.; Bätzner, D. L.; Bettiol, F.; Richards, B. S. Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer. Prog. Photovoltaics Res. Appl. 2009, 17, 191–197.
Zhao, X. W.; Wu, H. S.; Yang, L. S.; Wu, Y. Z.; Sun, Y. P.; Shang, Y. Y.; Cao, A. Y. High efficiency CNT-Si heterojunction solar cells by dry gas doping. Carbon 2019, 147, 164–171.