AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanomedicine-mediated ubiquitination inhibition boosts antitumor immune response via activation of dendritic cells

Jilong Wang1,3Mengwen Huang1Senbiao Chen2Yingli Luo2,6Song Shen1,7Xiaojiao Du2,3,4,5( )
School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 510006 China
Institutes for Life Sciences School of Medicine South China University of Technology Guangzhou 510006 China
National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510006 China
Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory) Guangzhou 510005 China
Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China
Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 China
Show Author Information

Graphical Abstract

Abstract

Tumor immunotherapy as a promising method for tumor treatment received tremendous attention. However, the problem of low clinical response rate still needs to be solved, especially in the poorly immunogenic tumors. The enhancement of tumor antigens presentation can effectively activate dendritic cells (DCs) and improve the tumor immunotherapy. In this work, TAK-243 as an inhibitor of the ubiquitin activating enzyme (UAE), was fabricated into cationic lipid-assisted nanoparticle (CLANTAK-243). The obtained CLANTAK-243 could act as an effective tumor immunotherapy enhancer to promote the maturation of DCs as well as antigen presentation, which obviously stimulated the T cells activation and proliferation. Such CLANTAK-243 injected intravenously could well trigger immune response to tumor cells in vivo. Importantly, mice treated with CLANTAK-243 could obtain a long immune memory effect to protect themselves from re-challenged tumor cells. Therefore, this work presented an effective immunotherapy strategy for poorly immunogenic tumor.

Electronic Supplementary Material

Download File(s)
12274_2021_3312_MOESM1_ESM.pdf (2.2 MB)

References

1

Galluzzi, L.; Chan, T. A.; Kroemer, G.; Wolchok, J. D.; López-Soto, A. The hallmarks of successful anticancer immunotherapy. Sci. Transl. Med. 2018, 10, eaat7807.

2

Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489.

3

Yang, Y. P. Cancer immunotherapy: Harnessing the immune system to battle cancer. J. Clin. Invest. 2015, 125, 3335–3337.

4

Rosenberg, S. A.; Yang, J. C.; Restifo, N. P. Cancer immunotherapy: Moving beyond current vaccines. Nat. Med. 2004, 10, 909–915.

5

Rosenberg, S. A. Cell transfer immunotherapy for metastatic solid cancer-what clinicians need to know. Nat. Rev. Clin. Oncol. 2011, 8, 577–585.

6

Chodon, T.; Comin-Anduix, B.; Chmielowski, B.; Koya, R. C.; Wu, Z. Q.; Auerbach, M.; Ng, C.; Avramis, E.; Seja, E.; Villanueva, A. et al. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin. Cancer Res. 2014, 20, 2457–2465.

7

Poschke, I.; Lövgren, T.; Adamson, L.; Nyström, M.; Andersson, E.; Hansson, J.; Tell, R.; Masucci, G. V.; Kiessling, R. A phase I clinical trial combining dendritic cell vaccination with adoptive T cell transfer in patients with stage IV melanoma. Cancer Immunol. Immunother. 2014, 63, 1061–1071.

8

Chen, C.; Li, A. N.; Sun, P.; Xu, J. W.; Du, W.; Zhang, J.; Liu, Y.; Zhang, R.; Zhang, S. C.; Yang, Z. M. et al. Efficiently restoring the tumoricidal immunity against resistant malignancies via an immune nanomodulator. J. Control. Release 2020, 324, 574–585.

9

Flynn, M. J.; Sayed, A. A.; Sharma, R.; Siddique, A.; Pinato, D. J. Challenges and opportunities in the clinical development of immune checkpoint inhibitors for hepatocellular carcinoma. Hepatology 2019, 69, 2258–2270.

10

Krantz, B. A.; O'Reilly, E. M. Biomarker-based therapy in pancreatic ductal adenocarcinoma: An emerging reality? Clin. Cancer Res. 2018, 24, 2241–2250.

11

Lutz, E. R.; Wu, A. A.; Bigelow, E.; Sharma, R.; Mo, G. L.; Soares, K.; Solt, S.; Dorman, A.; Wamwea, A.; Yager, A. et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol. Res. 2014, 2, 616–631.

12

Foley, K.; Kim, V.; Jaffee, E.; Zheng, L. Current progress in immunotherapy for pancreatic cancer. Cancer Lett. 2016, 381, 244–251.

13

Kim, R.; Emi, M.; Tanabe, K. Cancer immunoediting from immune surveillance to immune escape. Immunology 2007, 121, 1–14.

14

van der Burg, S. H.; Arens, R.; Ossendorp, F.; van Hall, T.; Melief, C. J. M. Vaccines for established cancer: Overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 2016, 16, 219–233.

15

Hu, Q. S.; Ye, Y. Q.; Chan, L. C.; Li, Y. J.; Liang, K.; Lin, A. F.; Egranov, S. D.; Zhang, Y. H.; Xia, W. Y.; Gong, J. et al. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nat. Immunol. 2019, 20, 835–851.

16

Tomasi, T. B.; Magner, W. J.; Khan, A. N. H. Epigenetic regulation of immune escape genes in cancer. Cancer Immunol. Immunother. 2006, 55, 1159–1184.

17

Bencherif, S. A.; Sands, R. W.; Ali, O. A.; Li, W. A.; Lewin, S. A.; Braschler, T. M.; Shih, T. Y.; Verbeke, C. S.; Bhatta, D.; Dranoff, G. et al. Injectable cryogel-based whole-cell cancer vaccines. Nat. Commun. 2015, 6, 7556.

18

Morishita, M.; Takahashi, Y.; Matsumoto, A.; Nishikawa, M.; Takakura, Y. Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials 2016, 111, 55–65.

19

Zhou, S. L.; Huang, Y. K.; Chen, Y.; Liu, S. S.; Xu, M. J.; Jiang, T. Z.; Song, Q. X.; Jiang, G.; Gu, X.; Gao, X. L. et al. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Biomaterials 2020, 235, 119795.

20

Wang, S. Y.; Qin, L.; Yamankurt, G.; Skakuj, K.; Huang, Z. Y.; Chen, P. C.; Dominguez, D.; Lee, A.; Zhang, B.; Mirkin, C. A. Rational vaccinology with spherical nucleic acids. Proc. Natl. Acad. Sci. USA 2019, 116, 10473–10481.

21

Nathanson, D. A.; Gini, B.; Mottahedeh, J.; Visnyei, K.; Koga, T.; Gomez, G.; Eskin, A.; Hwang, K.; Wang, J.; Masui, K. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 2014, 343, 72–76.

22

Gottesman, M. M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 2002, 53, 615–627.

23

Wang, K.; Wen, S. M.; He, L. H.; Li, A.; Li, Y.; Dong, H. Q.; Li, W.; Ren, T. B.; Shi, D. L.; Li, Y. Y. "Minimalist" nanovaccine constituted from near whole antigen for cancer immunotherapy. ACS Nano 2018, 12, 6398–6409.

24

Sondak, V. K.; Sosman, J. A. Results of clinical trials with an allogeneic melanoma tumor cell lysate vaccine: Melacine®. Semin. Cancer Biol. 2003, 13, 409–415.

25

Nath, D.; Shadan, S. The ubiquitin system. Nature 2009, 458, 421.

26

Zientara-Rytter, K.; Subramani, S. The roles of ubiquitin-binding protein shuttles in the degradative fate of ubiquitinated proteins in the ubiquitin-proteasome system and autophagy. Cells 2019, 8, 40.

27

Li, X.; Zhu, F.; Jiang, J. X.; Sun, C. Y.; Zhong, Q.; Shen, M.; Wang, X.; Tian, R.; Shi, C. J.; Xu, M. et al. Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer cells. Autophagy 2016, 12, 1521–1537.

28

Best, S.; Hashiguchi, T.; Kittai, A.; Bruss, N.; Paiva, C.; Okada, C.; Liu, T. T.; Berger, A.; Danilov, A. V. Targeting ubiquitin-activating enzyme induces ER stress-mediated apoptosis in B-cell lymphoma cells. Blood Adv. 2019, 3, 51–62.

29

Huang, X. D.; Dixit, V. M. Drugging the undruggables: Exploring the ubiquitin system for drug development. Cell Res. 2016, 26, 484–498.

30

Hyer, M. L.; Milhollen, M. A.; Ciavarri, J.; Fleming, P.; Traore, T.; Sappal, D.; Huck, J.; Shi, J.; Gavin, J.; Brownell, J. et al. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nat. Med. 2018, 24, 186–193.

31

Barghout, S. H.; Patel, P. S.; Wang, X. M.; Xu, G. W.; Kavanagh, S.; Halgas, O.; Zarabi, S. F.; Gronda, M.; Hurren, R.; Jeyaraju, D. V. et al. Preclinical evaluation of the selective small-molecule UBA1 inhibitor, TAK-243, in acute myeloid leukemia. Leukemia 2019, 33, 37–51.

32

Chen, K. G.; Shen, S.; Zhao, G.; Cao, Z. T.; Yang, X. Z.; Wang, J. Simultaneous elimination of cancer stem cells and bulk cancer cells by cationic-lipid-assisted nanoparticles for cancer therapy. Nano Res. 2018, 11, 4183–4198.

33

Verma, M. S.; Liu, S. Y.; Chen, Y. Y.; Meerasa, A.; Gu, F. X. Size-tunable nanoparticles composed of dextran-b-poly (D, L-lactide) for drug delivery applications. Nano Res. 2012, 5, 49–61.

34

Wang, H. X.; Zuo, Z. Q.; Du, J. Z.; Wang, Y. C.; Sun, R.; Cao, Z. T.; Ye, X. D.; Wang, J. L.; Leong, K. W.; Wang, J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today 2016, 11, 133–144.

35

Tang, S.; Meng, Q. S.; Sun, H. P.; Su, J. H.; Yin, Q.; Zhang, Z. W.; Yu, H. J.; Chen, L. L.; Gu, W. W.; Li, Y P. Dual pH-sensitive micelles with charge-switch for controlling cellular uptake and drug release to treat metastatic breast cancer. Biomaterials 2017, 114, 44–53.

36

Feng, Q.; Liu, J. P.; Li, X. Y.; Chen, Q. H.; Sun, J. S.; Shi, X. H.; Ding, B. Q.; Yu, H. J.; Li, Y. P.; Jiang, X. Y. One-step microfluidic synthesis of nanocomplex with tunable rigidity and acid-switchable surface charge for overcoming drug resistance. Small 2017, 13, 1603109.

37

Ou, H. L.; Cheng, T. J.; Zhang, Y. M.; Liu, J. J.; Ding, Y. X.; Zhen, J. R.; Shen, W. Z.; Xu, Y. J.; Yang, W. Z.; Niu, P. et al. Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater. 2018, 65, 339–348.

38

Zhou, X.; Laroche, F.; Lamers, G. E. M.; Torraca, V.; Voskamp, P.; Lu, T.; Chu, F. Q.; Spaink, H. P.; Abrahams, J. P.; Liu, Z. F. Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res. 2012, 5, 703–709.

39

Cao, Z. T.; Chen, Z. Y.; Sun, C. Y.; Li, H. J.; Wang, H. X.; Cheng, Q. Q.; Zuo, Z. Q.; Wang, J. L.; Liu, Y. Z.; Wang, Y. C. et al. Overcoming tumor resistance to cisplatin by cationic lipid-assisted prodrug nanoparticles. Biomaterials 2016, 94, 9–19.

40

Gardner, A.; Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol. 2016, 37, 855–865.

41

Menares, E.; Gálvez-Cancino, F.; Cáceres-Morgado, P.; Ghorani, E.; López, E.; Díaz, X.; Saavedra-Almarza, J.; Figueroa, D. A.; Roa, E.; Quezada, S. A. et al. Tissue-resident memory CD8+ T cells amplify anti-tumor immunity by triggering antigen spreading through dendritic cells. Nat. Commun. 2019, 10, 4401.

Nano Research
Pages 3900-3906
Cite this article:
Wang J, Huang M, Chen S, et al. Nanomedicine-mediated ubiquitination inhibition boosts antitumor immune response via activation of dendritic cells. Nano Research, 2021, 14(11): 3900-3906. https://doi.org/10.1007/s12274-021-3312-4
Topics:

797

Views

13

Crossref

13

Web of Science

12

Scopus

2

CSCD

Altmetrics

Received: 25 August 2020
Revised: 30 December 2020
Accepted: 02 January 2021
Published: 25 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return