AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface-tuning nanoporous AuCu3 engineering syngas proportion by electrochemical conversion of CO2

Chao An1Yongli Shen1Wenxiu Yan1Linxiu Dai1,2( )Changhua An1( )
Life and Health Institute Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry and Chemical Engineering Tianjin University of Technology, Tianjin 300384 China
Department of Materials Science and Engineering College of Engineering Peking University Beijing 100871 China
Show Author Information

Graphical Abstract

Abstract

The direct electrochemical conversion of CO2 to syngas with controllable composition remains challenging. In this work, driven by concentration gradient, a simple air-heating aided strategy has been developed to adjust surface composition of the self-supporting nanoporous AuCu3 alloy. According to Fick First Law, the interior Cu atoms of the AuCu3 alloy with Au-rich surface gradually segregated outwards during heating, realizing Cu-rich surface eventually. Correspondingly, the competing electrocatalytic CO2 reduction (ECR) to CO and hydrogen evolution reactions (HER) were tactfully balanced on these alloy surfaces, thus achieving proportion-tunable syngas (CO/H2). Density functional theory (DFT) calculations on the Gibbs free energy change of the COOH* and H* (ΔGCOOH*, ΔGH*) on the alloy surfaces were conducted, which are generally considered as the selectivity descriptors for CO and H2 products, respectively. It shows ΔGCOOH* gradually increases in contrast to the decreased ΔGH* with more Cu on the surface, suggesting H2 is more favored over Cu sites, which is consistent with the declining CO/H2 ratio observed in the experiments. This study reveals that the surface composition controls ECR activity of nanoporous AuCu3 alloy, providing an alternative way to the syngas production with desirable proportion.

Electronic Supplementary Material

Download File(s)
12274_2021_3313_MOESM1_ESM.pdf (3.5 MB)

References

1

Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.

2

Guo, Y. Q.; Xu, K.; Wu, C. Z.; Zhao, J. Y.; Xie, Y. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 637–646.

3

Yang, Y.; Luo, M. C.; Zhang, W. Y.; Sun, Y. J.; Chen, X.; Guo, S. J. Metal surface and interface energy electrocatalysis: Fundamentals, performance engineering, and opportunities. Chem 2018, 4, 2054–2083.

4

Zou, C. Q.; Xi, C.; Wu, D. Y.; Mao, J.; Liu, H.; Dong, C. K.; Du, X. W. Porous copper microspheres for selective production of multicarbon fuels via CO2 electroreduction. Small 2019, 15, 1902582.

5

Zhang, S.; Zhang, X.; Jiang, G. M.; Zhu, H. Y.; Guo S. J.; Su, D.; Lu, G.; Sun, S. H. Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 2014, 136, 7734–7739.

6

Ho, C. E.; Hsieh, W. Z.; Lee, P. T.; Huang, Y. H.; Kuo, T. T. High-temperature stability of Au/Pd/Cu and Au/Pd(P)/Cu surface finishes. Appl. Surf. Sci. 2018, 434, 1353–1360.

7

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

8

Zhang, W. J.; Xu, C. H.; Hu, Y.; Yang, S. Y.; Ma, L B.; Wang, L.; Zhao, P. Y.; Wang, C. X.; Ma, J.; Jin, Z. Electronic and geometric structure engineering of bicontinuous porous Ag–Cu nanoarchitectures for realizing selectivity-tunable electrochemical CO2 reduction. Nano Energy 2020, 73, 104796.

9

Qiu, C. H.; Hao, X. J.; Tan, L.; Wang, X.; Cao, W. J.; Liu, J. Y.; Zhao, Y. F.; Song, Y. F. 500 nm induced tunable syngas synthesis from CO2 photoreduction by controlling heterojunction concentration. Chem. Commun. 2020, 56, 5354–5357.

10

Bian, T.; Xiao, B. B.; Sun, B.; Huang, L.; Su, S.; Jiang, Y.; Xiao, J. K.; Yuan, A. H.; Zhang, H.; Yang, D. R. Local epitaxial growth of Au-Rh core-shell star-shaped decahedra: A case for studying electronic and ensemble effects in hydrogen evolution reaction. Appl. Catal. B: Environ. 2020, 263, 118255.

11

Luc, W.; Jiao, F. Nanoporous metals as electrocatalysts: State-of-the-art, opportunities, and challenges. ACS Catal. 2017, 7, 5856–5861.

12

Li, C. L.; Iqbal, M.; Lin, J. J.; Luo, X. L.; Jiang, B.; Marlgras, V.; Wu, K. C. W.; Kim, J.; Yamauchi, Y. Electrochemical deposition: An advanced approach for templated synthesis of nanoporous metal architectures. Acc. Chem. Res. 2018, 51, 1764–1773.

13

Pedireddy, S.; Lee, H. K.; Koh, C. S. L.; Tan, J. M. R.; Tjiu, W. W.; Ling, X. Y. Nanoporous gold bowls: A kinetic approach to control open shell structures and size-tunable lattice strain for electrocatalytic applications. Small 2016, 12, 4531–4540.

14

Su, H. Y.; Tian, Q.; Hurd Price, C. A.; Xu, L.; Qian, K.; Liu, J. Nanoporous core@shell particles: Design, preparation, applications in bioadsorption and biocatalysis. Nano Today 2020, 31, 100834.

15

Coaty, C.; Zhou, H. Y.; Liu, H. D.; Liu, P. A scalable synthesis pathway to nanoporous metal structures. ACS Nano 2018, 12, 432–440.

16

Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111.

17

Chatterjee, S.; Griego, C.; Hart, J. L.; Li, Y. W.; Taheri, M. L.; Keith, J.; Snyder, J. D. Free standing nanoporous palladium alloys as CO poisoning tolerant electrocatalysts for the electrochemical reduction of CO2 to formate. ACS Catal. 2019, 9, 5290–5301.

18

Wang, Z. L.; Liu, P.; Han, J. H.; Cheng, C.; Ning, S. C.; Hirata, A.; Fujita, T.; Chen, M. W. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying. Nat. Commun. 2017, 8, 1066.

19

Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

20

Zhang, N.; Long, R.; Gao, C.; Xiong, Y. J. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci. China Mater. 2018, 61, 771–805.

21

Lv, J. J.; Jouny, M.; Luc, W.; Zhu, W. L.; Zhu, J. J.; Jiao, F. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 2018, 30, 1803111.

22

Zhang, W. J.; Xu, C. H.; Hu, Y.; Yang, S. Y.; Ma, L. B.; Wang, L.; Zhao, P. Y.; Wang, C. X.; Ma, J.; Jin, Z. Electronic and geometric structure engineering of bicontinuous porous Ag-Cu nanoarchitectures for realizing selectivity-tunable electrochemical CO2 reduction. Nano Energy 2020, 73, 104796.

23

Abeyweera, S. C.; Yu, J.; Perdew, J. P.; Yan, Q. M.; Sun, Y. G. Hierarchically 3D porous Ag nanostructures derived from silver benzenethiolate nanoboxes: Enabling CO2 reduction with a near-unity selectivity and mass-specific current density over 500 A/g. Nano Lett. 2020, 20, 2806–2811.

24

Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.

25

Zhang, Y. N.; Liu, L.; Shi, L.; Yang, T. T.; Niu, D. F.; Hu, S. Z.; Zhang, X. S. Enhancing CO2 electroreduction on nanoporous silver electrode in the presence of halides. Electrochim. Acta 2019, 313, 561–569.

26

Song, J. T.; Ryoo, H.; Cho, M.; Kim, J.; Kim, J. G.; Chung, S. Y.; Oh, J. Nanoporous Au thin films on Si photoelectrodes for selective and efficient photoelectrochemical CO2 reduction. Adv. Energy Mater. 2017, 7, 1601103.

27

Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2016, 16, 16–22.

28

Liu, Y. M.; Tian, D.; Biswas, A. N.; Xie, Z. H.; Hwang, S.; Lee, J. H.; Meng, H.; Chen, J. G. Transition metal nitrides as promising catalyst supports for tuning CO/H2 syngas production from electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 11345–11348.

29

Ross, M. B.; Li, Y. F.; De Luna, P.; Kim, D.; Sargent, E. H.; Yang, P. D. Electrocatalytic rate alignment enhances syngas generation. Joule 2019, 3, 257–264.

30

Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 2017, 10, 1180–1185.

31

Niu, Z. Q.; Chen, S. P.; Yu, Y.; Lei, T.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires. Nano Res. 2020, 13, 2564–2569.

32

Ma, X. M.; Shen, Y. L.; Yao, S.; An, C. H.; Zhang, W. Q.; Zhu, J. F.; Si, R.; Guo, C. X.; An, C. H. Core-shell nanoporous AuCu3@Au monolithic electrode for efficient electrochemical CO2 reduction. J. Mater. Chem. A 2020, 8, 3344–3350.

33

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Rev. B 1996, 54, 11169–11186.

34

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

35

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

36

Liu, P.; Guan, P. F.; Hirata, A.; Zhang, L.; Chen, L. Y.; Wen, Y. R.; Ding, Y.; Fujita, T.; Erlebacher, J.; Chen, M. W. Visualizing under-coordinated surface atoms on 3D nanoporous gold catalysts. Adv. Mater. 2016, 28, 1753–1759.

37

Nguyen, A. M.; Barhri, M.; Dreyfuss, S.; Moldoven, S.; Miche, A.; Méthivier, C.; Ersen, O.; Mézailless, N.; Carenco, S. Bimetallic phosphide (Ni, Cu)2P nanoparticles by inward phosphorus migration and outward copper migration. Chem. Mater. 2019, 31, 6124–6134.

38

Liu, S. J.; Sun, Z. H.; Liu, Q. H.; Wu, L. H.; Huang, Y. Y.; Yao, T.; Zhang, J.; Hu, T. D.; Ge, M. R.; Hu, F. C. et al. Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles. ACS Nano 2014, 8, 1886–1892.

39

Shen, S. B.; Peng, X. Y.; Song, L. D.; Qiu, Y.; Li, C.; Zhou, L. C.; He, J.; Ren, J. Q.; Liu, X. J.; Luo, J. AuCu alloy nanoparticle embedded Cu submicrocone arrays for selective conversion of CO2 to ethanol. Small 2019, 11, 1902229.

40

Mistry, H.; Reske, R.; Strasser, P.; Cuenya, B. R. Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2 electroreduction. Catal. Today 2017, 288, 30–36.

41

An, C. H.; Wang, Z. F.; Xi, W.; Wang, K.; Liu, X. Z.; Ding, Y. Nanoporous Cu@Cu2O hybrid arrays enable photo-assisted supercapacitor with enhanced capacities. J. Mater. Chem. A 2019, 7, 15691–15697.

42

Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K. R.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336.

43

Hoffman, Z. B.; Gray, T. S.; Moraveck, K. B.; Gunnoe, T. B.; Zangari, G. Electrochemical reduction of carbon dioxide to syngas and formate at dendritic copper-indium electrocatalysts. ACS Catal. 2017, 7, 5381–5390.

44

Lee, J. H.; Kattel, S.; Jiang, Z.; Xie, Z. H.; Yao, S. Y.; Tackett, B. M.; Xu, W. Q.; Marinkovic, N. S.; Chen, J. G. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat. Commun. 2019, 10, 3724.

45

Zhu, W. L.; Michalsky, R.; Metin, Ö.; Lv, H. F.; Guo, S. J.; Wright, C. J.; Sun, X. L.; Peterson, A. A.; Sun, S. H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836.

46

Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. Electrochemical CO2 reduction: A classification problem. ChemPhysChem 2017, 18, 3266–3273.

47

Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

Nano Research
Pages 3907-3912
Cite this article:
An C, Shen Y, Yan W, et al. Surface-tuning nanoporous AuCu3 engineering syngas proportion by electrochemical conversion of CO2. Nano Research, 2021, 14(11): 3907-3912. https://doi.org/10.1007/s12274-021-3313-3
Topics:

824

Views

16

Crossref

15

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 22 September 2020
Revised: 21 December 2020
Accepted: 03 January 2021
Published: 29 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return