Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Tumor cells undergoing immunogenic cell death (ICD) have emerged as an in situ therapeutic vaccine helping to activate a persistent anti-tumor response. Several chemotherapeutic agents have been demonstrated to induce ICD, however accompanied with severe adverse effects in the clinic, weakening its immune responses. Herein, to elicit an intensive ICD while minimizing the systemic toxicity, we introduce a tumor targeting peptide modified bortezomib (BTZ) loading nanomedicine (i-NPBTZ) for the efficient delivery and controlled release of BTZ in tumors. This system is constructed by conjugating BTZ to PEGylated polyphenols via a pH-sensitive covalent boronate–phenol bond that allows them to self-assemble into nanovesicles in neutral condition with high drug loading efficiency. Once accumulated in acidic environment, BTZ–phenolic network is disassembled and thereby accelerates the release of BTZ from nanocarriers. The released BTZ selectively kill tumor cells with a concomitant evocation of tumor-specific cytotoxic T cells by triggering ICD in vivo. This can finally lead to an extended tumor ablation and prevention of distant metastasis in a syngeneic tumor mouse model, while reducing the systemic toxicity of BTZ. In general, our system offers a novel concept with clinical potential to exploit ICD for potentiating tumor immunotherapy and also provides an excellent example of the application of polymer–drug interaction for efficient drug delivery and controllable release.
Farkona, S.; Diamandis, E. P.; Blasutig, I. M. Cancer immunotherapy: The beginning of the end of cancer? BMC Med. 2016, 14, 73.
Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489.
Makkouk, A.; Weiner, G. J. Cancer immunotherapy and breaking immune tolerance: New approaches to an old challenge. Cancer Res. 2015, 75, 5–10.
Fesnak, A. D.; June, C. H.; Levine, B. L. Engineered t cells: The promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 2016, 16, 566–581.
Emens, L. A.; Ascierto, P. A.; Darcy, P. K.; Demaria, S.; Eggermont, A. M. M.; Redmond, W. L.; Seliger, B.; Marincola, F. M. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer 2017, 81, 116–129.
Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017, 17, 97–111.
Garg, A. D.; More, S.; Rufo, N.; Mece, O.; Sassano, M. L.; Agostinis, P.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 2017, 6, e1386829.
Bezu, L.; Gomes-da-Silva, L. C.; Dewitte, H.; Breckpot, K.; Fucikova, J.; Spisek, R.; Galluzzi, L.; Kepp, O.; Kroemer, G. Combinatorial strategies for the induction of immunogenic cell death. Front. Immunol. 2015, 6, 187.
Liu, P.; Zhao, L. W.; Pol, J.; Levesque, S.; Petrazzuolo, A.; Pfirschke, C.; Engblom, C.; Rickelt, S.; Yamazaki, T.; Iribarren, K. et al. Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat. Commun. 2019, 10, 1486.
Wen, Y. Y.; Chen, X.; Zhu, X. F.; Gong, Y. C.; Yuan, G. D.; Qin, X. Y.; Liu, J. Photothermal-chemotherapy integrated nanoparticles with tumor microenvironment response enhanced the induction of immunogenic cell death for colorectal cancer efficient treatment. ACS Appl. Mater. Interfaces 2019, 11, 43393–43408.
Zhu, W. J.; Chen, Q.; Jin, Q. T.; Chao, Y.; Sun, L. L.; Han, X.; Xu, J.; Tian, L. L.; Zhang, J. L.; Liu, T. et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Res. 2021, 14, 212–221.
Zhang, D.; Zhang, J.; Li, Q.; Song, A. X.; Li, Z. H.; Luan, Y. X. Cold to hot: Rational design of a minimalist multifunctional photo-immunotherapy nanoplatform toward boosting immunotherapy capability. ACS Appl. Mater. Interfaces 2019, 11, 32633–32646.
Zhang, P. C.; Zhai, Y. H.; Cai, Y.; Zhao, Y. L.; Li, Y. P. Nanomedicine-based immunotherapy for the treatment of cancer metastasis. Adv. Mater. 2019, 31, e1904156.
Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321–334.
Martin, J. D.; Cabral, H.; Stylianopoulos, T.; Jain, R. K. Improving cancer immunotherapy using nanomedicines: Progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 2020, 17, 251–266.
Nam, J.; Son, S.; Park, K. S.; Zou, W. P.; Shea, L. D.; Moon, J. J. Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 2019, 4, 398–414.
Yu, Z.; Guo, J. F.; Hu, M. Y.; Gao, Y. Q.; Huang, L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano 2020, 14, 4816–4828.
Dai, Z.; Tang, J.; Gu, Z. Y.; Wang, Y.; Yang, Y.; Yang, Y. N.; Yu, C. Z. Eliciting immunogenic cell death via a unitized nanoinducer. Nano Lett. 2020, 20, 6246–6254.
Shields, C. W., 4th; Wang, L. L. W.; Evans, M. A.; Mitragotri, S. Materials for immunotherapy. Adv. Mater. 2020, 32, e1901633.
Sun, Q. X.; Barz, M.; De Geest, B. G.; Diken, M.; Hennink, W. E.; Kiessling, F.; Lammers, T.; Shi, Y. Nanomedicine and macroscale materials in immuno-oncology. Chem. Soc. Rev. 2019, 48, 351–381.
von Roemeling, C.; Jiang, W.; Chan, C. K.; Weissman, I. L.; Kim, B. Y. S. Breaking down the barriers to precision cancer nanomedicine. Trends Biotechnol. 2017, 35, 159–171.
Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.
Shi, Y.; Lammers, T. Combining nanomedicine and immunotherapy. Acc. Chem. Res. 2019, 52, 1543–1554.
Yang, J. X.; Wang, C. H.; Shi, S.; Dong, C. Y. Nanotechnologies for enhancing cancer immunotherapy. Nano Res. 2020, 13, 2595–2616.
Li, S. X.; Feng, X. R.; Wang, J. X.; He, L.; Wang, C. X.; Ding, J. X.; Chen, X. S. Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Res. 2018, 11, 5769–5786.
Taha, M. S.; Cresswell, G. M.; Park, J.; Lee, W.; Ratliff, T. L.; Yeo, Y. Sustained delivery of carfilzomib by tannic acid-based nanocapsules helps develop antitumor immunity. Nano Lett. 2019, 19, 8333–8341.
Duan, X. P.; Chan, C.; Lin, W. B. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem., Int. Ed. 2019, 58, 670–680.
Chen, Q.; Chen, J. W.; Yang, Z. J.; Xu, J.; Xu, L. G.; Liang, C.; Han, X.; Liu, Z. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 2019, 31, 1802228.
Plescia, J.; Moitessier, N. Design and discovery of boronic acid drugs. Eur. J. Med. Chem. 2020, 195, 112270.
van de Donk, N. W. C. J. Carfilzomib versus bortezomib: No longer an ENDEAVOR. Lancet Oncol. 2017, 18, 1288–1290.
Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A. K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M. V. et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2016, 375, 754–766.
Cao, B. Y.; Li, J.; Mao, X. L. Dissecting bortezomib: Development, application, adverse effects and future direction. Curr. Pharm. Des. 2013, 19, 3190–3200.
Spisek, R.; Charalambous, A.; Mazumder, A.; Vesole, D. H.; Jagannath, S.; Dhodapkar, M. V. Bortezomib enhances dendritic cell (DC)–mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: Therapeutic implications. Blood 2007, 109, 4839–4845.
Hu, X. F.; Chai, Z. L.; Lu, L. W.; Ruan, H. T.; Wang, R. F.; Zhan, C. Y.; Xie, C.; Pan, J.; Liu, M.; Wang, H. et al. Bortezomib dendrimer prodrug-based nanoparticle system. Adv. Funct. Mater. 2019, 29, 1807941.
Ashley, J. D.; Stefanick, J. F.; Schroeder, V. A.; Suckow, M. A.; Kiziltepe, T.; Bilgicer, B. Liposomal bortezomib nanoparticles via boronic ester prodrug formulation for improved therapeutic efficacy in vivo. J. Med. Chem. 2014, 57, 5282–5292.
Wang, C. P.; Sang, H. J.; Wang, Y. T.; Zhu, F.; Hu, X. H.; Wang, X. Y.; Wang, X.; Li, Y. W.; Cheng, Y. Y. Foe to friend: Supramolecular nanomedicines consisting of natural polyphenols and bortezomib. Nano Lett. 2018, 18, 7045–7051.
Cheng, H.; Zhang, H. Q.; Xu, G. J.; Peng, J.; Wang, Z.; Sun, B.; Aouameur, D.; Fan, Z. C.; Jiang, W. X.; Zhou, J. P. et al. A combinative assembly strategy inspired reversibly borate-bridged polymeric micelles for lesion-specific rapid release of anti-coccidial drugs. Nano-Micro Lett. 2020, 12, 155.
Wang, M. M.; Cai, X. P.; Yang, J.; Wang, C. P.; Tong, L.; Xiao, J. R.; Li, L. A targeted and pH-responsive bortezomib nanomedicine in the treatment of metastatic bone tumors. ACS Appl. Mater. Interfaces 2018, 10, 41003–41011.
Zuccari, G.; Milelli, A.; Pastorino, F.; Loi, M.; Petretto, A.; Parise, A.; Marchetti, C.; Minarini, A.; Cilli, M.; Emionite, L. et al. Tumor vascular targeted liposomal-bortezomib minimizes side effects and increases therapeutic activity in human neuroblastoma. J. Control. Release 2015, 211, 44–52.
Zhu, J. H.; Huo, Q.; Xu, M.; Yang, F.; Li, Y.; Shi, H. H.; Niu, Y. M.; Liu, Y. Bortezomib-catechol conjugated prodrug micelles: Combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale 2018, 10, 18387–18397.
Krysko, D. V.; Garg, A. D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 2012, 12, 860–875.
Brunner, T. Ecto-calreticulin is essential for an efficient immunogenic cell death stimulation in mouse melanoma. Genes Immun. 2019, 20, 527–528.
Andersson, U.; Tracey, K. J. HMGB1 is a therapeutic target for sterile inflammation and infection. Ann. Rev. Immunol. 2011, 29, 139–162.
Palucka, K.; Banchereau, J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013, 39, 38–48.
Li, J.; Wang, H.; Wang, Y. Q.; Gong, X.; Xu, X. X.; Sha, X. Y.; Zhang, A.; Zhang, Z. W.; Li, Y. P. Tumor-activated size-enlargeable bioinspired lipoproteins access cancer cells in tumor to elicit anti-tumor immune responses. Adv. Mater. 2020, 32, 2002380.