AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The As-surface of an iron-based superconductor CaKFe4As4

Lu Cao1,2,§Yang Song1,2,§Ya-Bin Liu5Qi Zheng1,2Guangyuan Han1,2Wenyao Liu1,2Meng Li1,2Hui Chen1,2Yuqing Xing1,2Guang-Han Cao5Hong Ding1,3,4Xiao Lin1,2,3Shixuan Du1,2,3,4( )Yu-Yang Zhang1,2,3Geng Li1,2,3,4( )Ziqiang Wang6Hong-Jun Gao1,2,3,4( )
Institute of Physics Chinese Academy of SciencesBeijing 100190 China
School of Physical Sciences University of Chinese Academy of SciencesBeijing 100049 China
CAS Center for Excellence in Topological Quantum Computation University of Chinese Academy of SciencesBeijing 100190 China
Songshan Lake Materials Laboratory Dongguan 523808 China
Department of Physics Zhejiang UniversityHangzhou 310027 China
Department of Physics Boston College, Chestnut HillMassachusetts 02467 USA

§Lu Cao and Yang Song contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

As a new type of iron-based superconductor, CaKFe4As4 has recently been demonstrated to be a promising platform for observing Majorana zero modes (MZMs). The surface of CaKFe4As4 plays an important role in realizing the MZM since it hosts superconducting topological surface states. However, due to the complicated crystal structure, the terminal surface of CaKFe4As4 has not been determined yet. Here, by using scanning tunneling microscopy/spectroscopy (STM/S), we find that there are two types of surface structure in CaKFe4As4. Bias-dependent atomic resolution images show an evolvement from 2 × 2 superstructure with respect to the As lattice into 1 × 1 when the tip is brought close to the surface, revealing the sublattice of missing As atoms. Together with the first-principles calculations, we show that the surface As layer has a buckled structure. Our findings provide insight to future surface study of CaKFe4As4 as well as other iron-pnictide superconductors.

References

1

Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296-3297.

2

Paglione, J.; Greene, R. L. High-temperature superconductivity in iron-based materials. Nat. Phys. 2010, 6, 645-658.

3

Hirschfeld, P. J.; Korshunov, M. M.; Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 2011, 74, 124508.

4

Stewart, G. R. Superconductivity in iron compounds. Rev. Mod. Phys. 2011, 83, 1589-1652.

5

Wang, F.; Lee, D. H. The electron-pairing mechanism of iron-based superconductors. Science 2011, 332, 200-204.

6

Kordyuk, A. A. Iron-based superconductors: Magnetism, superconductivity, and electronic structure (Review Article). Low Temp. Phys. 2012, 38, 888-899.

7

Chen, X. H.; Dai, P. C.; Feng, D. L.; Xiang, T.; Zhang, F. C. Iron-based high transition temperature superconductors. Natl. Sci. Rev. 2014, 1, 371-395.

8

Si, Q. M.; Yu, R.; Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 2016, 1, 16017.

9

Hoffman, J. E. Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors. Rep. Prog. Phys. 2011, 74, 124513.

10

Richard, P.; Sato, T.; Nakayama, K.; Takahashi, T.; Ding, H. Fe-based superconductors: An angle-resolved photoemission spectroscopy perspective. Rep. Prog. Phys. 2011, 74, 124512.

11

Liu, W. Y.; Cao, L.; Zhu, S. Y.; Kong, L. Y.; Wang, G. W.; Papaj, M.; Zhang, P.; Liu, Y. B.; Chen, H.; Li, G. et al. A new Majorana platform in an Fe-As bilayer superconductor. Nat. Commun. 2020, 11, 5688.

12

Zhang, P.; Yaji, K.; Hashimoto, T.; Ota, Y.; Kondo, T.; Okazaki, K.; Wang, Z. J.; Wen, J. S.; Gu, G. D.; Ding, H. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 2018, 360, 182-186.

13

Wang, D. F.; Kong, L. Y.; Fan, P.; Chen, H.; Zhu, S. Y.; Liu, W. Y.; Cao, L.; Sun, Y. J.; Du, S. X.; Schneeloch, J. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 2018, 362, 333-335.

14

Kong, L. Y.; Zhu, S. Y.; Papaj, M.; Chen, H.; Cao, L.; Isobe, H.; Xing, Y. Q.; Liu, W. Y.; Wang, D. F.; Fan, P. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 2019, 15, 1181-1187.

15

Zhu, S. Y.; Kong, L. Y.; Cao, L.; Chen, H.; Papaj, M.; Du, S. X.; Xing, Y. Q.; Liu, W. Y.; Wang, D. F.; Shen, C. M. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 2020, 367, 189-192.

16

Shan, L.; Wang, Y. L.; Shen, B.; Zeng, B.; Huang, Y.; Li, A.; Wang, D.; Yang, H.; Ren, C.; Wang, Q. H. et al. Observation of ordered vortices with Andreev bound states in Ba0.6K0.4Fe2As2. Nat. Phys. 2011, 7, 325-331.

17

Li, A.; Yin, J. X.; Wang, J. H.; Wu, Z.; Ma, J. H.; Sefat, A. S.; Sales, B. C.; Mandrus, D. G.; McGuire, M. A.; Jin, R. Y. et al. Surface terminations and layer-resolved tunneling spectroscopy of the 122 iron pnictide superconductors. Phys. Rev. B 2019, 99, 134520.

18

Massee, F.; de Jong, S.; Huang, Y.; Kaas, J.; van Heumen, E.; Goedkoop, J. B.; Golden, M. S. Cleavage surfaces of the BaFe2-xCoxAs2 and FeySe1-xTex superconductors: A combined STM plus LEED study. Phys. Rev. B 2009, 80, 140507(R).

19

Nascimento, V. B.; Li, A.; Jayasundara, D. R.; Xuan, Y.; O'Neal, J.; Pan, S. H.; Chien, T. Y.; Hu, B.; He, X. B.; Li, G. R. et al. Surface geometric and electronic structures of BaFe2As2(001). Phys. Rev. Lett. 2009, 103, 076104.

20

Zhang, H.; Dai, J.; Zhang, Y. J.; Qu, D. R.; Ji, H. W.; Wu, G.; Wang, X. F.; Chen, X. H.; Wang, B.; Zeng, C. G. et al. 2×2 structure and charge inhomogeneity at the surface of superconducting BaFe2-xCoxAs2 (x = 0-0.32). Phys. Rev. B 2010, 81, 104520.

21

Nishizaki, T.; Nakajima, Y.; Tamegai, T.; Kobayashi, N. Surface structure and superconductivity in Ba(Fe0.93Co0.07)2As2 probed by scanning tunneling microscopy/spectroscopy. J. Phys. Soc. Jpn. 2011, 80, 014710.

22

Li, G. R.; He, X. B.; Zhang, J. D.; Jin, R. Y.; Sefat, A. S.; McGuire, M. A.; Mandrus, D. G.; Sales, B. C.; Plummer, E. W. Coupled structural and magnetic antiphase domain walls on BaFe2As2. Phys. Rev. B 2012, 86, 060512(R).

23

Fang, D. L.; Shi, X.; Du, Z. Y.; Richard, P.; Yang, H.; Wu, X. X.; Zhang, P.; Qian, T.; Ding, X. X.; Wang, Z. Y. et al. Observation of a Van Hove singularity and implication for strong-coupling induced Cooper pairing in KFe2As2. Phys. Rev. B 2015, 92, 144513.

24

Yang, X.; Du, Z. Y.; Lin, H.; Fang, D. L.; Yang, H.; Zhu, X. Y.; Wen, H. H. Vortex lattice and vortex bound states in CsFe2As2 investigated by scanning tunneling microscopy/spectroscopy. Phys. Rev. B 2018, 98, 024505.

25

Liu, X.; Tao, R.; Ren, M. Q.; Chen, W.; Yao, Q.; Wolf, T.; Yan, Y. J.; Zhang, T.; Feng, D. L. Evidence of nematic order and nodal superconducting gap along[110] direction in RbFe2As2. Nat. Commun. 2019, 10, 1039.

26

Gao, M.; Ma, F. J.; Lu, Z. Y.; Xiang, T. Surface structures of ternary iron arsenides AFe2As2 (A = Ba, Sr, or Ca). Phys. Rev. B 2010, 81, 193409.

27

Li, G. R.; Liang, L. B.; Li, Q.; Pan, M. H.; Nascimento, V. B.; He, X. B.; Karki, A. B.; Meunier, V.; Jin, R. Y.; Zhang, J. D. et al. Role of antiferromagnetic ordering in the (1×2) surface reconstruction of Ca(Fe1-xCox)2As2. Phys. Rev. Lett. 2014, 112, 077205.

28

Wilfert, S.; Schmitt, M.; Schmidt, H.; Mauerer, T.; Sessi, P.; Wang, H. D.; Mao, Q. H.; Fang, M. H.; Bode, M. Scanning tunneling microscopy and spectroscopy studies of the heavy-electron superconductor TlNi2Se2. Phys. Rev. B 2018, 97, 014514.

29

Iyo, A.; Kawashima, K.; Kinjo, T.; Nishio, T.; Ishida, S.; Fujihisa, H.; Gotoh, Y.; Kihou, K.; Eisaki, H.; Yoshida, Y. New-structure-type Fe- based superconductors: CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs). J. Am. Chem. Soc. 2016, 138, 3410-3415.

30

Meier, W. R.; Kong, T.; Bud'ko, S. L.; Canfield, P. C. Optimization of the crystal growth of the superconductor CaKFe4As4 from solution in the FeAs-CaFe2As2-KFe2As2 system. Phys. Rev. Mater. 2017, 1, 013401.

31

Fente, A.; Meier, W. R.; Kong, T.; Kogan, V. G.; Bud'ko, S. L.; Canfield, P. C.; Guillamón, I.; Suderow, H. Influence of multiband sign-changing superconductivity on vortex cores and vortex pinning in stoichiometric high-Tc CaKFe4As4. Phys. Rev. B 2018, 97, 134501.

32

Tersoff, J.; Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983, 50, 1998-2001.

33

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

34

Li, L. F.; Lu, S. Z.; Pan, J. B.; Qin, Z. H.; Wang, Y. Q.; Wang, Y. L.; Cao, G. Y.; Du, S. X.; Gao, H. J. Buckled germanene formation on Pt(111). Adv. Mater. 2014, 26, 4820-4824.

35

Song, C. L.; Zhang, H. M.; Zhong, Y.; Hu, X. P.; Ji, S. H.; Wang, L. L.; He, K.; Ma, X. C.; Xue, Q. K. Observation of double-dome superconductivity in potassium-doped FeSe thin films. Phys. Rev. Lett. 2016, 116, 157001.

36

Ren, M. Q.; Yan, Y. J.; Niu, X. H.; Tao, R.; Hu, D.; Peng, R.; Xie, B. P.; Zhao, J.; Zhang, T.; Feng, D. L. Superconductivity across Lifshitz transition and anomalous insulating state in surface K-dosed (Li0.8Fe0.2OH)FeSe. Sci. Adv. 2017, 3, e1603238.

37

Zhu, X. Y.; Wang, S.; Jia, Z. Y.; Zhu, L.; Li, Q. Y.; Zhao, W. M.; Xue, C. L.; Xu, Y. J.; Ma, Z.; Wen, J. S. et al. Realization of a metallic state in 1T-TaS2 with persisting long-range order of a charge density wave. Phys. Rev. Lett. 2019, 123, 206405.

38

Mou, D. X.; Kong, T.; Meier, W. R.; Lochner, F.; Wang, L. L.; Lin, Q. S.; Wu, Y.; Bud'ko, S. L.; Eremin, I.; Johnson, D. D. et al. Enhancement of the superconducting gap by nesting in CaKFe4As4: A new high temperature superconductor. Phys. Rev. Lett. 2016, 117, 277001.

39

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

40

Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15-50.

41

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

42

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

43

Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of stoner I. Phys. Rev. B 1991, 44, 943-954.

44

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

Nano Research
Pages 3921-3925
Cite this article:
Cao L, Song Y, Liu Y-B, et al. The As-surface of an iron-based superconductor CaKFe4As4. Nano Research, 2021, 14(11): 3921-3925. https://doi.org/10.1007/s12274-021-3316-0
Topics:

823

Views

7

Crossref

10

Web of Science

8

Scopus

2

CSCD

Altmetrics

Received: 15 November 2020
Revised: 16 December 2020
Accepted: 04 January 2021
Published: 24 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return