AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced second-order Stark effect in twisted bilayer graphene quantum dots

Xian Wang1Yingqi Cui2Li Zhang1Mingli Yang1( )
Institute of Atomic and Molecular Physics Sichuan UniversityChengdu 610065 China
School of Physics and Electronic Engineering Zhengzhou Normal UniversityZhengzhou 450044 China
Show Author Information

Graphical Abstract

Abstract

External electric field and interlayer twist introduce diverse changes in their confined electronic states of bilayer graphene quantum dots. Using a quantum-dot model, the band gaps of twisted bilayer graphene in finite sizes of about 1.4–2.4 nm with varying twist angles are studied in the presence of an electrostatic field perpendicular to the flakes by means of first-principles calculations. The size-dependent gaps are widened by the interlayer twist, but narrowed by the applied field. Their coupling, however, results in an enhanced Stark response in the twisted structures of which the field-induced band-gap variations are about 3–4 times as large as that of the corresponding untwisted structures under the same field strength. The exceptional Stark shifts come from the field-induced asynchronous shifts in their occupied and virtual energy levels, which are further enhanced by strong interlayer coupling at specific twist angles. Moreover, the shift of band gaps with the field strength follows the quadratic Stark response with large second-order shifting coefficients. The enhanced and tunable Stark shift suggests a gateway to the band engineering of bilayer graphene quantum dots by tuning their sizes, twist angles and their coupling with applied field.

References

1

Bao, Q. L.; Loh, K. P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6, 3677-3694.

2

Zhang, H.; Lv, X. J.; Li, Y. M.; Wang, Y.; Li, J. H. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380-386.

3

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203-212.

4

Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951-954.

5

Latil, S.; Henrard, L. Charge carriers in few-layer graphene films. Phys. Rev. Lett. 2006, 97, 036803.

6

Min, H.; MacDonald, A. H. Electronic structure of multilayer graphene. Prog. Theor. Phys. Supp. 2008, 176, 227-252.

7

Zhou, S. Y.; Gweon, G. H.; Fedorov, A. V.; First, P. N.; De Heer, W. A.; Lee, D. H.; Guinea, F.; Neto, A. H. C.; Lanzara, A. Substrate- induced bandgap opening in epitaxial graphene. Nat. Mater. 2007, 6, 770-775.

8

Kuzmenko, A. B.; Crassee, I.; van der Marel, D; Blake, P.; Novoselov, K. S. Determination of the gate-tunable band gap and tight-binding parameters in bilayer graphene using infrared spectroscopy. Phys. Rev. B 2009, 80, 165406.

9

Ritter, K. A.; Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. 2009, 8, 235-242.

10

Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010, 22, 734-738.

11

Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Lægsgaard, E.; Baraldi, A.; Lizzit, S. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315-319.

12

Wu, H. C.; Chaika, A. N.; Huang, T. W.; Syrlybekov, A.; Abid, M.; Aristov, V. Y.; Molodtsova, O. V.; Babenkov, S. V.; Marchenko, D.; Sánchez-Barriga, J. et al. Transport gap opening and high on-off current ratio in trilayer graphene with self-aligned nanodomain boundaries. ACS Nano 2015, 9, 8967-8975.

13

da Costa, D. R.; Zarenia, M.; Chaves, A.; Farias, G. A.; Peeters, F. M.; Analytical study of the energy levels in bilayer graphene quantum dots. Carbon 2014, 78, 392-400.

14

da Costa, D. R.; Zarenia, M.; Chaves, A.; Farias, G. A.; Peeters, F. M. Magnetic field dependence of energy levels in biased bilayer graphene quantum dots. Phys. Rev. B 2016, 93, 085401.

15

Giavaras, G.; Nori, F. Graphene quantum dots formed by a spatial modulation of the Dirac gap. Appl. Phys. Lett. 2010, 97, 243106.

16

Trauzettel, B.; Bulaev, D. V.; Loss, D.; Burkard, G. Spin qubits in graphene quantum dots. Nat. Phys. 2007, 3, 192-196.

17

Banszerus, L.; Frohn, B.; Epping, A.; Neumaier, D.; Watanabe, K.; Taniguchi, T.; Stampfer, C. Gate-defined electron-hole double dots in bilayer graphene. Nano Lett. 2018, 18, 4785-4790.

18

Eich, M.; Pisoni, R.; Pally, A.; Overweg, H.; Kurzmann, A.; Lee, Y.; Rickhaus, P.; Watanabe, K.; Taniguchi, T.; Ensslin, K. et al. Coupled quantum dots in bilayer graphene. Nano Lett. 2018, 18, 5042-5048.

19

Bockrath, M. Unprecedented charge state control in graphene quantum dots. Nano Lett. 2020, 5, 2937-2938.

20

Miller, D. A. B.; Chemla, D. S.; Damen, T. C.; Gossard, A. C.; Wiegmann, W.; Wood, T. H.; Burrus, C. A. Band-edge electroabsorption in quantum well structures: The quantum-confined stark effect. Phys. Rev. Lett. 1984, 53, 2173-2176.

21

Autler, S. H.; Townes, C. H. Stark effect in rapidly varying fields. Phys. Rev. 1955, 100, 703-722.

22

Shafraniuk, S. E. Unconventional electromagnetic properties of the graphene quantum dot. Phys. Rev. B 2019, 100, 075404.

23

Chattopadhyaya, M.; Alam, M. M.; Chakrabarti, S. On the microscopic origin of bending of grapheme nanoribbons in the presence of a perpendicular electric field. Phys. Chem. Chem. Phys. 2012, 14, 9439-9443.

24

Guan, Z. Y.; Ni, S.; Hu, S. L. Tuning the electronic and magnetic properties of graphene flake embedded in boron nitride nanoribbons with transverse electric fields: First-principles calculations. ACS Omega 2019, 4, 10293-10301.

25

Guo, Y. F.; Guo, W. L.; Chen, C. F. Tuning field-induced energy gap of bilayer graphene via interlayer spacing. Appl. Phys. Lett. 2008, 92, 243101.

26

Zhang, Y. B.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820-823.

27

Xia, F. N.; Farmer, D. B.; Lin, Y. M.; Avouris, P. Graphene field- effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 2010, 10, 715-718.

28

Lui, C. H.; Li, Z. Q.; Mak, K. F.; Cappelluti, E.; Heinz, T. F. Observation of an electrically tunable band gap in trilayer graphene. Nat. Phys. 2011, 7, 944-947.

29

Ramasubramaniam, A.; Naveh, D.; Towe, E. Tunable band gaps in bilayer graphene-BN heterostructures. Nano Lett. 2011, 11, 1070-1075.

30

Quhe, R.; Zheng, J. X.; Luo, G. F.; Liu, Q. H.; Qin, R.; Zhou, J.; Yu, D. P.; Nagase, S.; Mei, W. N.; Gao, Z. X. et al. Erratum: Tunable and sizable band gap of single-layer graphene sandwiched between hexagonal boron nitride. NPG Asia Mater. 2012, 4, e16.

31

Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; dos Santos, J. M. B. L.; Nilsson, J.; Guinea, F.; Geim, A. K.; Neto, A. H. C. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.

32

Oostinga, J. B.; Heersche, H. B.; Liu, X. L.; Morpurgo, A. F.; Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 2008, 7, 151-157.

33

Lee, K.; Fallahazad, B.; Xue, J. M.; Dillen, D. C.; Kim, K.; Taniguchi, T.; Watanabe, K. Tutuc, E. Chemical potential and quantum hall ferromagnetism in bilayer graphene. Science 2014, 345, 58-61.

34

Woo, J.; Yun, K. H.; Chung, Y. C. Graphene monoxide bilayer as a high-performance on/off switching media for nanoelectronics. ACS Appl. Mater. Interfaces 2016, 8, 10477-10482.

35

Velasco J. Jr; Lee, J.; Wong, D.; Kahn, S.; Tsai, H. Z.; Costello, J.; Umeda, T.; Taniguchi, T.; Watanabe, K.; Zettl, A. Visualization and control of single-electron charging in bilayer graphene quantum dots. Nano Lett. 2018, 18, 5104-5110.

36

Cao, T. F.; Zheng, X. H.; Huang, L. F.; Gong, P. L.; Zeng, Z. Hydrogen-coverage-dependent stark effect in bilayer graphene and graphene/BN nanofilms. J. Phys. Chem. C 2014, 118, 10472-10480.

37

Pedersen, T. G. Stark effect and polarizability of graphene quantum dots. Phys. Rev. B 2017, 96, 115432.

38

Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic- angle graphene superlattices. Nature 2018, 556, 43-50.

39

Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80-84.

40

Saito, Y.; Ge, J. Y.; Watanabe, K.; Taniguchi, T.; Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 2020, 16, 926-930.

41

Shi, H. H.; Zhan, Z.; Qi, Z. K.; Huang, K. X.; van Veen, E.; Silva-Guillén, J. Á.; Zhang, R. X.; Li, P. J.; Xie, K.; Ji, H. X. et al. Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat. Commun. 2020, 11, 371.

42

Kerelsky, A.; McGilly, L. J.; Kennes, D. M.; Xian, L.; Yankowitz, M.; Chen, S. W.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 2019, 572, 95-100.

43

Kim, K.; DaSilva, A.; Huang, S. Q.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watanabe, K.; LeRoy, B. J.; MacDonald, A. H.; Tutuc, E. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 3364-3369.

44

Park, M. J.; Kim, Y.; Cho, G. Y.; Lee, S. Higher-order topological insulator in twisted bilayer graphene. Phys. Rev. Lett. 2019, 123, 216803.

45

Uri, A.; Grover, S.; Cao, Y.; Crosse, J. A.; Bagani, K.; Rodan-Legrain, D.; Myasoedov, Y.; Watanabe, K.; Taniguchi, T.; Moon, P. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 2020, 581, 47-52.

46

Rickhaus, P.; Wallbank, J.; Slizovskiy, S.; Pisoni, R.; Overweg, H.; Lee, Y.; Eich, M.; Liu, M. H.; Watanabe, K.; Taniguchi, T. et al. Transport through a network of topological channels in twisted bilayer graphene. Nano Lett. 2018, 18, 6725-6730.

47

Deng, B. C.; Ma, C.; Wang, Q. Y.; Yuan, S. F.; Watanabe, K.; Taniguchi, T.; Zhang, F.; Xia, F. N. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photonics. 2020, 14, 549-553.

48

Mirzakhani, M.; Peeters, F. M.; Zarenia, M. Circular quantum dots in twisted bilayer graphene. Phys. Rev. B 2020, 101, 075413.

49

Tiutiunnyk, A.; Duque, C. A.; Caro-Lopera, F. J.; Mora-Ramos, M. E.; Correa, J. D. Opto-electronic properties of twisted bilayer graphene quantum dots. Phys. E: Low Dimens. Syst. Nanostruct. 2019, 112, 36-48.

50

Tepliakov, N. V.; Orlov, A. V.; Kundelev, E. V.; Rukhlenko, I. D. Twisted bilayer graphene quantum dots for chiral nanophotonics. J. Phys. Chem. C 2020, 41, 22704-22710.

51

Pan, D. Y.; Guo, L.; Zhang, J. C.; Xi, C.; Xue, Q.; Huang, H.; Li, J. H.; Zhang, Z. W.; Yu, W. J.; Chen, Z. W. et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 2012, 22, 3314-3318.

52

Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Zong, J.; Zhang J. M.; Li, C. Z. One-pot hydrothermal synthesis of graphene quantum dots surface- passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 2012, 36, 97-101.

53

Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R. et al. Strongly green- photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011, 47, 6858-6860.

54

Forte, G.; Grassi, A.; Lombardo, G. M.; La Magna, A.; Angilella, G. G. N.; Pucci, R.; Vilardi, R. Modeling vacancies and hydrogen impurities in graphene: A molecular point of view. Phys. Lett. A 2008, 372, 6168-6174.

55

Berashevich, J.; Chakraborty, T. Interlayer repulsion and decoupling effects in stacked turbostratic graphene flakes. Phys. Rev. B 2011, 84, 03340.

56

Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Li, C. Z. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 2012, 48, 3686-3699.

57

Bistritzer, R.; Macdonald, A. H. Transport between twisted graphene layers. Phys. Rev. B 2010, 81, 245412.

58

Jiang, Y. H.; Lai, X. Y.; Watanabe, K.; Taniguchi, T.; Haule, K.; Mao, J. H.; Andrei, E. Y. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 2019, 573, 91-95.

59

Sahu, B.; Min, H.; MacDonald, A. H.; Banerjee, S. K. Energy gaps, magnetism, and electric-field effects in bilayer graphene nanoribbons. Phys. Rev. B 2008, 78, 045404.

60

Yanai, T.; Tew, D.; Handy, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57.

61

Chai, J. D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.

62

Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265-3269.

63

Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular- orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724-728.

64

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A., Nakatsuji, H. et al. Gaussian 16, Revision C. 01; Gaussian, Inc. : Wallingford, CT, USA, 2016.

65

Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158-6169.

66

Heyd, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 1187-1192.

67

Uchida, K.; Furuya, S.; Iwata, J. I; Oshiyama, A. Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes. Phys. Rev. B 2014, 90, 155451.

68

Egli, M.; Gessner, R. V. Stereoelectronic effects of deoxyribose O4' on DNA conformation. Proc. Natl. Acad. Sci. USA 1995, 92, 180-184.

69

Sarkhel, S.; Rich, A.; Egli, M. Water-nucleobase "stacking": H-π and lone pair-π interactions in the atomic resolution crystal structure of an RNA pseudoknot. J. Am. Chem. Soc. 2003, 125, 8998-8999.

70

Wang, J. J; Wang, Z. Y.; Zhang, R. J.; Zheng, Y. X.; Chen, L. Y.; Wang, S. Y.; Tsoo, C. C.; Huang, H. J.; Su, W. S. A first-principles study of the electrically tunable band gap in few-layer penta-graphene. Phys. Chem. Chem. Phys. 2018, 20, 18110-18116.

71

Boyd, R. W. Nonlinear Optics, 3rd ed.; Academic Press: Waltham, 2008; p 25.

Nano Research
Pages 3935-3941
Cite this article:
Wang X, Cui Y, Zhang L, et al. Enhanced second-order Stark effect in twisted bilayer graphene quantum dots. Nano Research, 2021, 14(11): 3935-3941. https://doi.org/10.1007/s12274-021-3318-y
Topics:

906

Views

7

Crossref

9

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 09 October 2020
Revised: 06 January 2021
Accepted: 07 January 2021
Published: 30 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return