AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions

Shijie Zhang1,2,3Yongshang Zhang1,2,3Guosheng Shao1,2,3( )Peng Zhang1,2,3( )
School of Materials Science and Engineering Zhengzhou UniversityZhengzhou 450001 China
State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM) Zhengzhou University, 100 Kexue AvenueZhengzhou 450001 China
Zhengzhou Materials Genome Institute Building 2, Zhongyuanzhigu, Xingyang 450100 China
Show Author Information

Graphical Abstract

Abstract

Li-S batteries are considered as a highly promising candidate for the next-generation energy storage system, attributing to their tremendous energy density. However, the two-dimensional island nucleation-growth process of lithium sulfide leads to a thick insulating film covering the electrode, inducing slow electrons transfer and mass-transfer of ions and liquid sulfur species in working Li-S cells. Here, we demonstrate a bio-inspired strategy of constructing ant-nest-like hierarchical porous ultrathin carbon nanosheet networks with the implants of metallic nanoparticles electrocatalysts (HPC-MEC) as efficient nanoreactors enabling rapid mass transfer, via a simple and green NaCl template. Such nanoreactors with a large active surface area could effectively anchor polysulfides for mitigating the shuttle effect, facilitating uniformly thin Li2S film, and promoting the mass transfer for fast sulfur species conversions. This helps contribute to a continuously high sulfur utilization in Li-S batteries with the HPC-MEC reactors. As a typical exhibition, cobalt embedded hierarchical porous carbon (HPC-Co) could realize to deliver a remarkably high specific capacity of 1, 540.6 mAh·g-1, an excellent rate performance of 878.8 mAh·g-1 at 2 C, and high area capacity of 11.6 mAh·cm-2 at a high sulfur load of 10 mg·cm-2 and low electrolyte/sulfur ratio of 5 μL·mg-1.

Electronic Supplementary Material

Download File(s)
12274_2021_3319_MOESM1_ESM.pdf (5.8 MB)

References

1

Peng, H. J.; Huang, J. Q.; Zhang, Q. A review of flexible lithium- sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 2017, 46, 5237-5288.

2

Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nanostructured current collectors in lithium-sulfur batteries. Nano Res. 2017, 10, 4027-4054.

3

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751-11787.

4

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium- sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

5

Zhang, S. J.; Xiao, W. D.; Zhang, Y. S.; Liu, K. L.; Zhang, X. D.; Zhao, J. T.; Wang, Z.; Zhang, P.; Shao, G. S. Construction of a low-defect and highly conductive 3D graphene network to enable a high sulphur content cathode for high performance Li-S/graphene batteries. J. Mater. Chem. A 2018, 6, 22555-22565.

6

Yuan, H.; Peng, H. J.; Li, B. Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J. Q.; Zhang, Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802768.

7

Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903955.

8

Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 2015, 27, 5203-5209.

9

Zhang, T.; Marinescu, M.; Walus, S.; Kovacik, P.; Offer, G. J. What limits the rate capability of Li-S batteries during discharge: Charge transfer or mass transfer? J. Electrochem. Soc. 2018, 165, A6001- A6004.

10

Yuan, L. X.; Qiu, X. P.; Chen, L. Q.; Zhu, W. T. New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy. J. Power Sources 2009, 189, 127-132.

11

Liu, K. L.; Zhang, P.; Miao. F. J.; Zhang, S. J.; Shen, Y. L.; Zhang, Y. S.; Cao, G. Q.; Shao, G. S. High-quality rGO/MoS2 composite via a facile "prereduction-microwave" strategy for enhanced lithium and sodium storage. J. Alloy. Compd. 2020, 821, 153207.

12

Zhang, P.; Li, Z.; Zhang, S. J.; Shao, G. S. Recent advances in effective reduction of graphene oxide for highly improved performance toward electrochemical energy storage. Energy Environ. Mater. 2018, 1, 5-12.

13

Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries. Nano Res. 2015, 8, 2663-2675.

14

Meng, Z.; Zhang, S. L.; Wang, J. L.; Yan, X. F.; Ying, H. J.; Xu, X.; Zhang, W. K.; Hou, X. H.; Han, W. Q. Nickel-based-hydroxide- wrapped activated carbon cloth/sulfur composite with tree-bark-like structure for high-performance freestanding sulfur cathode. ACS Appl. Energy Mater. 2018, 1, 1594-1602.

15

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

16

Xiao, Z. B.; Yang, Z.; Zhang, L. J.; Pan, H.; Wang, R. H. Sandwich-type NbS2@S@I-doped graphene for high-sulfur-loaded, ultrahigh-rate, and long-life lithium-sulfur batteries. ACS Nano 2017, 11, 8488- 8498.

17

Song, Y. Z.; Cai, W. L.; Kong, L.; Cai, J. S.; Zhang, Q.; Sun, J. Y. Rationalizing electrocatalysis of Li-S chemistry by mediator design: Progress and prospects. Adv. Energy Mater. 2020, 10, 1901075.

18

Zuo, X. T.; Zhen, M. M.; Wang, C. Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 2019, 12, 829-836.

19

Kou, W.; Li, X. C.; Liu, Y.; Zhang, X. P.; Yang, S. R.; Jiang, X. B.; He, G. H.; Dai, Y.; Zheng, W. J.; Yu, G. H. Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li-S batteries. ACS Nano 2019, 13, 5900-5909.

20

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

21

Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen- doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977-3985.

22

Guo, Z. Q.; Nie, H. G.; Yang, Z.; Hua, W. X.; Ruan, C. P.; Chan, D.; Ge, M. Z.; Chen, X. A.; Huang, S. M. 3D CNTs/graphene-S-Al3Ni2 cathodes for high-sulfur-loading and long-life lithium-sulfur batteries. Adv. Sci. 2018, 5, 1800026.

23

Lin, C.; Qu, L. B.; Li, J. T.; Cai, Z. Y.; Liu, H. Y.; He, P.; Xu, X.; Mai, L. Q. Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Res. 2019, 12, 205-210.

24

Li, C. C.; Shi, J. J.; Zhu, L.; Zhao, Y. Y.; Lu, J.; Xu, L. Q. Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res. 2018, 11, 4302-4312.

25

Wang, M. X.; Fan, L. S.; Tian, D.; Wu, X.; Qiu, Y.; Zhao, C. Y.; Guan, B.; Wang, Y.; Zhang, N. Q.; Sun, K. N. Rational design of hierarchical SnO2/1T-MoS2 nanoarray electrode for ultralong-life Li-S batteries. ACS Energy Lett. 2018, 3, 1627-1633.

26

Zhang, J. T.; Li, Z.; Lou, X. W. A freestanding selenium disulfide cathode based on cobalt disulfide-decorated multichannel carbon fibers with enhanced lithium storage performance. Angew. Chem. 2017, 129, 14295-14300.

27

Zhang, Y. S.; Zhang, P.; Li, B.; Zhang, S. J.; Liu, K. L.; Hou, R. H.; Zhang, X. L.; Silva, S. R. P.; Shao, G. S. Vertically aligned graphene nanosheets on multi-yolk/shell structured TiC@C nanofibers for stable Li-S batteries. Energy Storage Mater. 2020, 27, 159-168.

28

Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673-2682.

29

Chen, X. X.; Ding, X. Y.; Wang, C. S.; Feng, Z. Y.; Xu, L. Q.; Gao, X.; Zhai, Y. J.; Wang, D. B. A multi-shelled CoP nanosphere modified separator for highly efficient Li-S batteries. Nanoscale 2018, 10, 13694-13701.

30

Dai, C. L.; Hu, L. Y.; Wang, M. Q.; Chen, Y. M.; Han, J.; Jiang, J.; Zhang, Y.; Shen, B. L.; Niu, Y. B.; Bao, S. J. et al. Uniform α-Ni(OH)2 hollow spheres constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term lithium-sulfur batteries. Energy Storage Mater. 2017, 8, 202-208.

31

Pang, Q.; Kwok, C. Y.; Kundu, D.; Liang, X.; Nazar, L. F. Lightweight metallic MgB2 mediates polysulfide redox and promises high- energy-density lithium-sulfur batteries. Joule 2019, 3, 136-148.

32

Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065.

33

Yuan, H.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Sulfur redox reactions at working interfaces in lithium-sulfur batteries: A perspective. Adv. Mater. Interfaces 2019, 6, 1802046.

34

Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Zhao, M.; Chen, X.; Zhang, Q.; Huang, J. Q. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903813.

35

Miao, F. J.; Lu, N.; Zhang, P.; Zhang, Z. Y.; Shao, G. S. Multidimension- controllable synthesis of ant nest-structural electrode materials with unique 3D hierarchical porous features toward electrochemical applications. Adv. Funct. Mater. 2019, 29, 1808994.

36

Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci. 2018, 11, 2620-2630.

37

Li, S. P.; Chen, X.; Hu, F.; Zeng, R.; Huang, Y. H.; Yuan, L. X.; Xie, J. Cobalt-embedded carbon nanofiber as electrocatalyst for polysulfide redox reaction in lithium sulfur batteries. Electrochim. Acta 2019, 304, 11-19.

38

Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998-2004.

39

Shi, R. Y.; Han, C. P.; Li, H. F.; Xu, L.; Zhang, T. F.; Li, J. Q.; Lin, Z. Q.; Wong, C. P.; Kang, F. Y.; Li, B. H. NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. J. Mater. Chem. A 2018, 6, 17057-17066.

40

Qin, J.; He, C. N.; Zhao, N. Q.; Wang, Z. Y.; Shi, C. S.; Liu, E. Z.; Li, J. J. Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 2014, 8, 1728-1738.

41

Cheng, Z. B.; Pan, H.; Chen, J. Q.; Meng, X. P.; Wang, R. H. Separator modified by cobalt-embedded carbon nanosheets enabling chemisorption and catalytic effects of polysulfides for high-energy- density lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901609.

42

Yu, M. L.; Zhou, S.; Wang, Z. Y.; Wang, Y. W.; Zhang, N.; Wang, S.; Zhao, J. J.; Qiu, J. S. Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Mater. 2019, 20, 98-107.

43

Shi, H. D.; Qin, J. Q.; Huang, K.; Lu, P. F.; Zhang, C. F.; Dong, Y. F.; Ye, M.; Liu, Z. M.; Wu, Z. S. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2020, 59, 12147-12153.

44

Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.

45

Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 2020, 10, 2002271.

46

Tian, D.; Song, X. Q.; Wang, M. X.; Wu, X.; Qiu, Y.; Guan, B.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 2019, 9, 1901940.

47

Boyjoo, Y.; Shi, H. D.; Olsson, E.; Cai, Q.; Wu, Z. S.; Liu, J.; Lu, G. Q. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000651.

48

Tu, S. B.; Chen, X.; Zhao, X. X.; Cheng, M. R.; Xiong, P. X.; He, Y. W.; Zhang, Q.; Xu, Y. H. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries. Adv. Mater. 2018, 30, 1804581.

49

Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric- energy-density lithium-sulfur batteries. Nano Energy 2019, 60, 743-751.

50

Zhang, S. J.; Zhang, P.; Hou, R. H.; Li, B.; Zhang, Y. S.; Liu, K. L.; Zhang, X. L.; Shao, G. S. In situ sulfur-doped graphene nanofiber network as efficient metal-free electrocatalyst for polysulfides redox reactions in lithium-sulfur batteries. J. Energy Chem. 2020, 47, 281-290.

51

Li, Y. K.; Zhang, P.; Wan, D. Y.; Xue, C.; Zhao, J. T.; Shao, G. S. Direct evidence of 2D/1D heterojunction enhancement on photocatalytic activity through assembling MoS2 nanosheets onto super-long TiO2 nanofibers. Appl. Surf. Sci., 2020, 504, 144361.

52

Hou, R. H.; Zhang, S. J.; Zhang, P.; Zhang, Y. S.; Zhang, X. L.; Li, N.; Shi, Z. H.; Shao, G. S. Ti3C2 MXene as an "energy band bridge" to regulate the heterointerface mass transfer and electron reversible exchange process for Li-S batteries, J. Mater. Chem. A, 2020, 8, 25255-25267.

53

Zhang, P.; Li, Y. K.; Zhang, Y. S.; Hou, R. H.; Zhang, X. L.; Xue, C.; Wang, S. B.; Zhu, B. C.; Li, N.; Shao, G. S. Photogenerated electron transfer process in heterojunctions: In-situ irradiation XPS. Small Methods 2020, 4, 2000214.

Nano Research
Pages 3942-3951
Cite this article:
Zhang S, Zhang Y, Shao G, et al. Bio-inspired construction of electrocatalyst decorated hierarchical porous carbon nanoreactors with enhanced mass transfer ability towards rapid polysulfide redox reactions. Nano Research, 2021, 14(11): 3942-3951. https://doi.org/10.1007/s12274-021-3319-x
Topics:

843

Views

16

Crossref

20

Web of Science

22

Scopus

2

CSCD

Altmetrics

Received: 25 October 2020
Revised: 15 December 2020
Accepted: 10 January 2021
Published: 10 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return