AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Near-infrared light-controllable bufalin delivery from a black phosphorus-hybrid supramolecular hydrogel for synergistic photothermal-chemo tumor therapy

Jiaqi He1,§Guoqin Chen1,§Peng Zhao2( )Caiwen Ou3( )
Cardiology Department of Panyu Central Hospital Guangzhou University of Chinese MedicineGuangzhou 510006 China
Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhou 510515 China
Guangdong Provincial Key Laboratory of Shock and Microcirculation Zhujiang Hospital of Southern Medical University, Southern Medical UniversityGuangzhou 510280 China

§Jiaqi He and Guoqin Chen contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Bufalin is efficacious in treating various tumors, however, the clinical application of which is restricted by the myocardial toxicity. Developing a smart synergetic delivery system is widely considered as a promising therapeutic strategy. To address this issue, a black phosphorus hybrid polypeptides hydrogel was designed to highly load bufalin, and achieved near-infrared (NIR)-controllable drug release with synergistic photothermal-chemo therapeutic effect. Black phosphorus nanosheets (BPNSs) and bufalin were co-loaded in temperature-sensitive supramolecular hydrogel to receive smart hybridization (BP-bufalin@SH). With NIR irradiation (1 W·cm-2), BP-bufalin@SH exhibited a rapid and large temperature increase and released bufalin via light-controllable manner, with which the side effects of bufalin were greatly decreased. Combined with photothermal-chemo therapeutic effect, BP-bufalin@SH could collapse the mitochondrial transmembrane potential resulting in the irreversible apoptosis of tumor cells, and realize a highly efficient in vivo tumor elimination with good biosafety and biocompatibility. This work provides a new hydrogel platform for controlling bufalin release, and thus further promotes the practical application on antitumor therapy.

Electronic Supplementary Material

Download File(s)
12274_2021_3325_MOESM1_ESM.pdf (2 MB)

References

1

Yang, D.; Yang, G. X.; Yang, P. P.; Lv, R. C.; Gai, S. L.; Li, C. X.; He, F.; Lin, J. Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Adv. Funct. Mater. 2017, 27, 1700371.

2

Virostko, J.; Capasso, A.; Yankeelov, T. E.; Goodgame, B. Recent trends in the age at diagnosis of colorectal cancer in the US National Cancer Data Base, 2004-2015. Cancer 2019, 125, 3828-3835.

3

Zhao, T. T.; Xu, H.; Xu, H. M.; Wang, Z. N.; Xu, Y. Y.; Song, Y. X.; Yin, S. C.; Liu, X. Y.; Miao, Z. F. The efficacy and safety of targeted therapy with or without chemotherapy in advanced gastric cancer treatment: A network meta-analysis of well-designed randomized controlled trials. Gastric Cancer 2018, 21, 361-371.

4

Qi, F. H.; Li, A. Y.; Zhao, L.; Xu, H. L.; Inagaki, Y.; Wang, D. L.; Cui, X. Y.; Gao, B.; Kokudo, N.; Nakata, M. et al. Cinobufacini, an aqueous extract from Bufo bufo gargarizans Cantor, induces apoptosis through a mitochondria-mediated pathway in human hepatocellular carcinoma cells. J. Ethnopharmacol. 2010, 128, 654-661.

5

Gao, Y.; Li, H. X.; Xu, L. T.; Wang, P.; Xu, L. Y.; Cohen, L.; Yang, P. Y.; Gu, K.; Meng, Z. Q. Bufalin enhances the anti-proliferative effect of sorafenib on human hepatocellular carcinoma cells through downregulation of ERK. Mol. Biol. Rep. 2012, 39, 1683-1689.

6

Bick, R. J.; Poindexter, B. J.; Sweney, R. R.; Dasgupta, A. Effects of Chan Su, a traditional Chinese medicine, on the calcium transients of isolated cardiomyocytes: Cardiotoxicity due to more than Na, K-ATPase blocking. Life Sci. 2002, 72, 699-709.

7

Azalim, P.; do Monte, F. M.; Rendeiro, M. M.; Liu, X. F.; O'Doherty, G. A.; Fontes, C. F.; Leitão, S. G.; Quintas, L. E. M.; Noël, F. Conformational states of the pig kidney Na+/K+-ATPase differently affect bufadienolides and cardenolides: A directed structure-activity and structure-kinetics study. Biochem. Pharmacol. 2020, 171, 113679.

8

De France, K. J.; Badv, M.; Dorogin, J.; Siebers, E.; Panchal, V.; Babi, M.; Moran-Mirabal, J.; Lawlor, M.; Cranston, E. D.; Hoare, T. Tissue response and biodistribution of injectable cellulose nanocrystal composite hydrogels. ACS Biomater. Sci. Eng. 2019, 5, 2235-2246.

9

Chen, Y. J.; Qiu, Y. Y.; Wang, Q. Q.; Li, D. W.; Hussain, T.; Ke, H. Z.; Wei, Q. F. Mussel-inspired sandwich-like nanofibers/hydrogel composite with super adhesive, sustained drug release and anti- infection capacity. Chem. Eng. J. 2020, 399, 125668.

10

Yang, C. B.; Wang, Z. Y.; Ou, C. W.; Chen, M. S.; Wang, L.; Yang, Z. M. A supramolecular hydrogelator of curcumin. Chem. Commun. 2014, 50, 9413-9415.

11

Cai, Y. B.; Zhang, J. W.; He, Y. Y.; Li, Z. H.; Hua, Y. Q.; Wu, Z. Y.; Gao, J.; Ou, C. W.; Chen, M. S. A supramolecular hydrogel of puerarin. J. Biomed. Nanotechnol. 2018, 14, 257-266.

12

Chen, G. Q.; Li, J. L.; Song, M. C.; Wu, Z. Y.; Zhang, W. Z.; Wang, Z. Y.; Gao, J.; Yang, Z. M.; Ou, C. W. A mixed component supramolecular hydrogel to improve mice cardiac function and alleviate ventricular remodeling after acute myocardial infarction. Adv. Funct. Mater. 2017, 27, 1701798.

13

Shi, K.; Xue, B. X.; Jia, Y. P.; Yuan, L. P.; Han, R. X.; Yang, F.; Peng, J. R.; Qian, Z. Y. Sustained co-delivery of gemcitabine and cis- platinum via biodegradable thermo-sensitive hydrogel for synergistic combination therapy of pancreatic cancer. Nano Res. 2019, 12, 1389-1399.

14

Luo, Y. L.; Qiao, B.; Zhang, P.; Yang, C.; Cao, J.; Yuan, X.; Ran, H. T.; Wang, Z. G.; Hao, L.; Cao, Y. et al. TME-activatable theranostic nanoplatform with ATP burning capability for tumor sensitization and synergistic therapy. Theranostics 2020, 10, 6987-7001.

15

Yang, X.; Gao, L.; Guo, Q.; Li, Y. J.; Ma, Y.; Yang, J.; Gong, C. Y.; Yi, C. Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy. Nano Res. 2020, 13, 2579-2594.

16

Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053-2108.

17

Wang, H. Y.; Chang, J. J.; Shi, M. W.; Pan, W.; Li, N.; Tang, B. A dual-targeted organic photothermal agent for enhanced photothermal therapy. Angew. Chem., Int. Ed. 2019, 58, 1057-1061.

18

Chu, K. F.; Dupuy, D. E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer 2014, 14, 199-208.

19

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657-674.

20

Chen, D. P.; Tang, Y. Y.; Zhu, J. W.; Zhang, J. J.; Song, X. J.; Wang, W. J.; Shao, J. J.; Huang, W.; Chen, P.; Dong, X. C. Photothermal- pH-hypoxia responsive multifunctional nanoplatform for cancer photo-chemo therapy with negligible skin phototoxicity. Biomaterials 2019, 221, 119422.

21

Zhang, F. R.; Han, X. L.; Hu, Y. Y.; Wang, S. H.; Liu, S.; Pan, X. T.; Wang, H. Y.; Ma, J. J.; Wang, W. W.; Li, S. S. et al. Interventional photothermal therapy enhanced brachytherapy: A new strategy to fight deep pancreatic cancer. Adv. Sci. 2019, 6, 1801507.

22

Jia, X. N.; Xu, W. G.; Ye, Z. K.; Wang, Y. L.; Dong, Q.; Wang, E. K.; Li, D.; Wang, J. Functionalized graphene@gold nanostar/lipid for pancreatic cancer gene and photothermal synergistic therapy under photoacoustic/photothermal imaging dual-modal guidance. Small 2020, 16, 2003707.

23

Weng, Q. H.; Wang, X. B.; Wang, X.; Bando, Y.; Golberg, D. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989-4012.

24

Wang, D.; Tang, M. C.; Jiang, H. J.; Li, M. H.; Jiang, S.; Sun, L.; Sun, J. B. Helical bowl-like SnS2 with structure-induced conversion efficiency for enhanced photothermal therapy. Chem. Eng. J. 2020, 400, 125814.

25

Han, J. Y.; Xia, H. P.; Wu, Y. F.; Kong, S. N.; Deivasigamani, A.; Xu, R.; Hui, K. M.; Kang, Y. J. Single-layer MoS2 nanosheet grafted up-conversion nanoparticles for near-infrared fluorescence imaging- guided deep tissue cancer phototherapy. Nanoscale 2016, 8, 7861-7865.

26

Liu, T.; Chao, Y.; Gao, M.; Liang, C.; Chen, Q.; Song, G. S.; Cheng, L.; Liu, Z. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Res. 2016, 9, 3003-3017.

27

Wang, D.; Ge, C. C.; Liang, W. Y.; Yang, Q. H.; Liu, Q.; Ma, W.; Shi, L. L.; Wu, H.; Zhang, Y. H.; Wu, Z. Z. et al. In vivo enrichment and elimination of circulating tumor cells by using a black phosphorus and antibody functionalized intravenous catheter. Adv. Sci. 2020, 7, 2000940.

28

Ma, Y.; Zhang, D. Y.; Peng, Z.; Guan, S. X.; Zhai, J. Q. Delivery of platinum (IV) prodrugs via Bi2Te3 nanoparticles for photothermal- chemotherapy and photothermal/photoacoustic imaging. Mol. Pharmaceutics 2020, 17, 3403-3411.

29

Zhu, X. J.; Zhang, T. M.; Jiang, D. C.; Duan, H. L.; Sun, Z. J.; Zhang, M. M.; Jin, H. C.; Guan, R. N.; Liu, Y. J.; Chen, M. Q. et al. Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nat. Commun. 2018, 9, 4177.

30

Geng, S. Y.; Pan, T.; Zhou, W. H.; Cui, H. D.; Wu, L.; Li, Z. B.; Chu, P. K.; Yu, X. F. Bioactive phospho-therapy with black phosphorus for in vivo tumor suppression. Theranostics 2020, 10, 4720-4736.

31

Shao, J. D.; Ruan, C. S.; Xie, H. H.; Chu, P. K.; Yu, X. F. Photochemical activity of black phosphorus for near-infrared light controlled in situ biomineralization. Adv. Sci. 2020, 7, 2000439.

32

Pan, T.; Fu, W.; Xin, H. B.; Geng, S. Y.; Li, Z. B.; Cui, H. D.; Zhang, Y. L.; Chu, P. K.; Zhou, W. H.; Yu, X. F. Calcium phosphate mineralized black phosphorous with enhanced functionality and anticancer bioactivity. Adv. Funct. Mater. 2020, 30, 2003069.

33

Zeng, X. W.; Luo, M. M.; Liu, G.; Wang, X. S.; Tao, W.; Lin, Y. X.; Ji, X. Y.; Nie, L.; Mei, L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv. Sci. 2018, 5, 1800510.

34

Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J. J.; Zhang, H. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.

35

Wang, H. M.; Zhong, L.; Liu, Y.; Xu, X.; Xing, C.; Wang, M.; Bai, S. M.; Lu, C. H.; Yang, H. H. A black phosphorus nanosheet-based siRNA delivery system for synergistic photothermal and gene therapy. Chem. Commun. 2018, 54, 3142-3145.

36

Zhang, S. B.; Guo, W. S.; Wei, J.; Li, C.; Liang, X. J.; Yin, M. Z. Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging- guided cancer therapy. ACS Nano 2017, 11, 3797-3805.

37

Qiu, M.; Wang, D.; Liang, W. Y.; Liu, L. P.; Zhang, Y.; Chen, X.; Sang, D. K.; Xing, C. Y.; Li, Z. J.; Dong, B. Q. et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 501-506.

38

Ren, C. H.; Gao, Y.; Liu, J. J.; Zhang, Y. M.; Pu, G. J.; Yang, L. J.; Huang, F.; Yang, C. H.; Yang, Z. M.; Liu, J. F. Anticancer supramolecular hydrogel of D/L-peptide with enhanced stability and bioactivity. J. Biomed. Nanotechnol. 2018, 14, 1125-1134.

39

Li, H. M.; Xie, R. R.; Huang, C.; He, J. Q.; Yang, P. P.; Tao, J.; Lin, B. Q.; Zhao, P. Black phosphorus quantum dots nanocomposites based activatable bimodal imaging and determination of intracellular glutathione. Sens. Actuators B Chem. 2020, 321, 128518.

40

Jaque, D.; Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodríguez, E. M.; Soléa, J. G. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494-9530.

41

Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C Nanomater. Interfaces 2007, 111, 3636-3641.

42

Yang, X. Y.; Wang, D. Y.; Zhu, J. W.; Xue, L.; Ou, C. J.; Wang, W. J.; Lu, M.; Song, X. J.; Dong, X. C. Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy. Chem. Sci. 2019, 10, 3779-3785.

43

Yang, X. Y.; Wang, D. Y.; Shi, Y. H.; Zou, J. H.; Zhao, Q. S.; Zhang, Q.; Huang, W.; Shao, J. J.; Xie, X. J.; Dong, X. C. Black phosphorus nanosheets immobilizing Ce6 for imaging-guided photothermal/photodynamic cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 12431-12440.

44

Ye, J. Q.; Chen, S. B.; Maniatis, T. Cardiac glycosides are potent inhibitors of interferon-β gene expression. Nat. Chem. Biol. 2011, 7, 25-33.

Nano Research
Pages 3988-3998
Cite this article:
He J, Chen G, Zhao P, et al. Near-infrared light-controllable bufalin delivery from a black phosphorus-hybrid supramolecular hydrogel for synergistic photothermal-chemo tumor therapy. Nano Research, 2021, 14(11): 3988-3998. https://doi.org/10.1007/s12274-021-3325-z
Topics:

826

Views

24

Crossref

24

Web of Science

24

Scopus

2

CSCD

Altmetrics

Received: 21 November 2020
Revised: 05 January 2021
Accepted: 11 January 2021
Published: 05 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return