AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Homogenous lithium plating/stripping regulation by a mass- producible Zn particles modified Li-metal composite anode

ZiLi Zhang1Yang Jin1 ( )Yu Zhao1Jing Xu1Bin Sun1Kai Liu2Hongfei Lu1Nawei Lv1Zhimin Dang1,3Hui Wu2
School of Electrical Engineering Zhengzhou UniversityZhengzhou450001 China
State key Laboratory of Power System Department of Electrical Engineering, Tsinghua UniversityBeijing 100084 China
State Key Lab of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua UniversityBeijing 100084 China
Show Author Information

Graphical Abstract

Abstract

A stable lithium-metal anode is critical for high performance lithium-metal batteries. However, heterogeneous Li plating/stripping may induce lithium dendrites formation on bare lithium-metal anode, which lowers the cell Coulombic efficiency and weakens battery safety. We found that bare Li metal surface becomes bumpy and cratered with numerous pits formation during Li stripping. These pits enhance electric field distortion and heterogeneous ion distribution during plating. Li plating preferentially happens on the edge of the pits, intensifying the voltage variation and Li dendrites growth, which leads to the cell rapid death or separator piercing. Herein, we propose a facile and mass-producible method to homogenize Li plating/stripping via adding lithiophilic particles into Li metal. Zinc particles were uniformly pressed in Li metal by a facile and scalable physical strategy of "rolling", and transformed into LiZn alloy in situ through Li-Zn alloying at room temperature in a few minutes. The critical role of modified LiZn/Li composite anode in stabilizing electrode surface was revealed by both electrochemical test and simulation. Compared with bare Li anode, the evenly dispersed LiZn alloy particles in Li metal can effectively regulate the Li plating/stripping on electrode surface, reducing deepness of pits during stripping and directionally inducing Li plating to maintain electrode surface stability. On this basis, the pits depth of LiZn/Li composite during Li stripping is reduced to ~ 15 μm, which is much shallower than that of bare Li metal of ~ 40 μm. The LiZn/Li composite electrode can stably cycle for 600 h under Li plating/stripping capacity of 1 mAh·cm-2 and current density of 1 mA·cm-2 without any short circuit. Furthermore, assembled LiZn/Li||LiFePO4 full cell presents better cycling stability and rate performances than that of based on bare Li anode.

Electronic Supplementary Material

Download File(s)
12274_2021_3326_MOESM1_ESM.pdf (2.7 MB)

References

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

2

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

3

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503-11618.

4

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, e1800561.

5

Wang, R. H.; Cui, W. S.; Chu, F. L.; Wu, F. X. Lithium metal anodes: Present and future. J. Energy Chem. 2020, 48, 145-159.

6

Sun, X. W.; Zhang, X. Y.; Ma, Q. T.; Guan, X. Z.; Wang, W.; Luo, J. Y. Revisiting the electroplating process for lithium-metal anodes for lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 6665-6674.

7

Shen, X.; Cheng, X. B.; Shi, P.; Huang, J. Q.; Zhang, X. Q.; Yan, C.; Li, T.; Zhang, Q. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries. J. Energy Chem. 2019, 37, 29-34.

8

Liu, D. H.; Bai, Z. Y.; Li, M.; Yu, A. P.; Luo, D.; Liu, W. W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. W. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: Strategies and perspectives. Chem. Soc. Rev. 2020, 49, 5407-5445.

9

Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853-1858.

10

Wang, J. Y.; Huang, W.; Pei, A.; Li, Y. Z.; Shi, F. F.; Yu, X. Y.; Cui, Y. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 2019, 4, 664-670.

11

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.

12

Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356-1365.

13

Yu, Z. A.; Wang, H. S.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K. C.; Wang, X. C.; Huang, W. X.; Choudhury, S. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 2020, 5, 526-533.

14

Li, T.; Shi, P.; Zhang, R.; Liu, H.; Cheng, X. B.; Zhang, Q. Dendrite- free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Res. 2019, 12, 2224-2229.

15

Yuan, Y. X.; Wu, F.; Chen, G. H.; Bai, Y.; Wu, C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. J. Energy Chem. 2019, 37, 197-203.

16

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403-10473.

17

Zhang, R.; Chen, X.; Shen, X.; Zhang, X. Q.; Chen, X. R.; Cheng, X. B.; Yan, C.; Zhao, C. Z.; Zhang, Q. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2018, 2, 764-777.

18

Liu, H.; Cheng, X. B.; Zhang, R.; Shi, P.; Shen, X.; Chen, X. R.; Li, T.; Huang, J. Q.; Zhang, Q. Mesoporous graphene hosts for dendrite- free lithium metal anode in working rechargeable batteries. Trans. Tianjin Univ. 2020, 26, 127-134.

19

Ryou, M. H.; Lee, Y. M.; Lee, Y.; Winter, M.; Bieker, P. Mechanical surface modification of lithium metal: Towards improved li metal anode performance by directed Li plating. Adv. Funct. Mater. 2015, 25, 834-841.

20

Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C. M.; Rodriguez-Martínez, L. M.; Armand, M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives. Angew. Chem., Int. Ed. 2018, 57, 15002-15027.

21

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

22

Lang, J. L.; Liu, K.; Jin, Y.; Long, Y. Z.; Qi, L. H.; Wu, H.; Cui, Y. A molten battery consisting of Li metal anode, AlCl3-LiCl cathode and solid electrolyte. Energy Storage Mater. 2020, 24, 412-416.

23

Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2017, 29, 1605531.

24

Yuan, Y. X.; Wu, F.; Bai, Y.; Li, Y.; Chen, G. H.; Wang, Z. H.; Wu, C. Regulating Li deposition by constructing LiF-rich host for dendrite- free lithium metal anode. Energy Storage Mater. 2019, 16, 411-418.

25

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513-537.

26

Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626-632.

27

Li, Q.; Zhu, S. Q.; Lu, Y. Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 1606422.

28

Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932-6939.

29

An, Y. L.; Fei, H. F.; Zeng, G. F.; Xu, X. Y.; Ci, L. J.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries. Nano Energy 2018, 47, 503-511.

30

Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

31

Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421-443.

32

Chen, L.; Fan, X. L.; Ji, X.; Chen, J.; Hou, S.; Wang, C. S. High-energy Li metal battery with lithiated host. Joule 2019, 3, 732-744.

33

Qin, L. G.; Xu, H.; Wang, D.; Zhu, J. F.; Chen, J.; Zhang, W.; Zhang, P. G.; Zhang, Y.; Tian, W. B.; Sun, Z. M. Fabrication of lithiophilic copper foam with interfacial modulation toward high-rate lithium metal anodes. ACS Appl. Mater. Interfaces 2018, 10, 27764-27770.

34

Zhang, Z. L.; Jia, B. R.; Liu, L.; Zhao, Y. Z.; Wu, H. Y.; Qin, M. L.; Han, K.; Wang, W. A.; Xi, K.; Zhang, L.; Qi, G. G. et al. Hollow multihole carbon bowls: A stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 2019, 13, 11363-11371.

Nano Research
Pages 3999-4005
Cite this article:
Zhang Z, Jin Y, Zhao Y, et al. Homogenous lithium plating/stripping regulation by a mass- producible Zn particles modified Li-metal composite anode. Nano Research, 2021, 14(11): 3999-4005. https://doi.org/10.1007/s12274-021-3326-y
Topics:

839

Views

29

Crossref

31

Web of Science

31

Scopus

1

CSCD

Altmetrics

Received: 06 December 2020
Revised: 07 January 2021
Accepted: 11 January 2021
Published: 06 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return