Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As the growing criterion of electromagnetic wave (EMW)absorption materials, micro/nano-scale magnetic materials are drawing more and more attention for their unique features compared to bulky absorbers. Generally, the complex permeability of micro/nano-scale magnetic absorbers varies in a relatively narrow range, whatever for the storage of magnetic energy or the dissipation of magnetic energy. If so, how the small variation of permeability affects the ultimate performances is still unclear. Here, a strategy of electromagnetic parameters regulation for the magnetic materials is applied to understand the loss contribution in micro/nano- scale magnetic absorbers. After analyzing the evolution of electromagnetic maps of ten ferrosoferric oxide samples, it can be found that the dissipation contribution of permeability for magnetic materials is weaker than that of permittivity, in spite of its significant role in determining the impedance matching characteristics. In summary, this work systematically explores the loss contribution in micro/nano-magnetic absorbers for the first time, which is of great importance in designing and optimizing the microwave absorption properties of magnetic absorbers.
Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high- performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049-2053.
Sun, H.; Che, R. C.; You, X.; Jiang, Y. S; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120-8125.
Shu, J. C.; Cao, M. S.; Zhang, M.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Cao, M. Q. Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 2020, 30, 1908299.
Zhao, B.; Li, Y.; Zeng, Q. W.; Wang, L.; Ding, J. J.; Zhang, R.; Che, R. C. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 2020, 16, 2003502.
Xu, J.; Zhang, X.; Yuan, H. R.; Zhang, S.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 2020, 159, 357-365.
Yan, F.; Guo, D.; Zhang, S.; Li, C. Y.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. An ultra-small NiFe2O4 hollow particle/graphene hybrid: Fabrication and electromagnetic wave absorption property. Nanoscale 2018, 10, 2697-2703.
Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486-490.
Yang, W. Y.; Zhang, Y. F.; Qiao, G. Y.; Lai, Y. F.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Du, H. L.; Zhang, Y.; Yang, Y. C. et al. Tunable magnetic and microwave absorption properties of Sm1.5Y0.5Fe17-xSix and their composites. Acta Mater. 2018, 145, 331-336.
Qu, B.; Zhu, C. L.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Coupling hollow Fe3O4-Fe Nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 2016, 8, 3730-3735.
Chang, Y. D.; Zhang, Y. N.; Meng, C.; Liu, S. Q.; Chang, H.; Liu, Z. Strong and wide microwave absorption of SrFe12-2xNixRuxO19 enhanced by dislocation stripes. Appl. Phys. Lett. 2020, 116, 082404.
Liang, X. H.; Man, Z. M.; Quan, B.; Zheng, J.; Gu, W. H.; Zhang, Z.; Ji, G. B. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 2020, 12, 102.
Wang, X. Y.; Lu, Y. K.; Zhu, T.; Chang, S. C.; Wang, W. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption. Chem. Eng. J. 2020, 388, 124317.
Ding, J. J.; Wang, L.; Zhao, Y. H.; Xing, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@Ppy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.
Wu, H. J.; Liu, J. L.; Liang, H. S.; Zang, D. Y. Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 2020, 393, 24743.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comput. Mater. Sci. 1996, 6, 15-50.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
Perdew, J. P.; Burke, K.; Ernzerhof, K. M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505-1509.
Yang, T.; Wen, X. D.; Huo, C. F.; Li, Y. W.; Wang, J. G.; Jiao, H. J. Structure and energetics of hydrogen adsorption on Fe3O4(111). J. Mol. Catal. A: Chem. 2009, 302, 129-136.
Lou, Z. C.; Li, R.; Wang, P.; Zhang, Y.; Chen, B.; Huang, C. X.; Wang, C. C.; Han, H.; Li, Y. J. Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior. Chem. Eng. J. 2020, 391, 123571.
Chen, Y. M.; Pang, L.; Li, Y.; Luo, H.; Duan, G. G.; Mei, C. T.; Xu, W. H.; Zhou, W.; Liu, K. M.; Jiang, S. H. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding. Composites Part A 2020, 135, 105960.
Liu, Q. L.; Zhang, D.; Fan, T. X. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 2008, 93, 013110.
Lu, B.; Huang, H.; Dong, X. L.; Zhang, X. F.; Lei, J. P.; Sun, J. P.; Dong, C. Influence of alloy components on electromagnetic characteristics of core/shell-type Fe-Ni nanoparticles. J. Appl. Phys. 2008, 104, 114313.
Zhang, X. M.; Ji, G. B.; Liu, W.; Quan, B.; Liang, X. H.; Shang, C. M.; Cheng, Y.; Du, Y. W. Thermal conversion of an Fe3O4@metal-organic framework: A new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932-12942.
Quan, B.; Liang, X. H.; Ji, G. B.; Lv, J.; Dai, S. S.; Xu, G. Y.; Du, Y. W. Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach. Carbon 2018, 129, 310-320.
Quan, B.; Shi, W. H.; Ong, S. J. H.; Lu, X. C.; Wang, P. L.; Ji, G. B.; Guo, Y. F.; Zheng, L. R.; Xu, Z. C. J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 2019, 29, 1901236.
Li, X. K.; Paier, J. Adsorption of water on the Fe3O4(111) surface: Structures, stabilities, and vibrational properties studied by density functional theory. J. Phys. Chem. C 2016, 120, 1056-1065.
Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 2018, 12, 4583-4593.
Quan, B.; Liang, X. H.; Zhang, X.; Xu, G. Y.; Ji, G. B.; Du, Y. W. Functionalized carbon nanofibers enabling stable and flexible absorbers with effective microwave response at low thickness. ACS Appl. Mater. Interfaces 2018, 10, 41535-41543.
Zhao, Z. H.; Zhou, X. J.; Kou, K. C.; Wu, H. J. PVP-assisted transformation of ZIF-67 into cobalt layered double hydroxide/carbon fiber as electromagnetic wave absorber. Carbon 2021, 173, 80-90.
Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.