AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tuned single atom coordination structures mediated by polarization force and sulfur anions for photovoltaics

Hongyu Jing1,2,§Zhengyan Zhao1,§Chunyang Zhang1Wei Liu1Danyang Wu1Chao Zhu3( )Ce Hao1Jiangwei Zhang4( )Yantao Shi1( )
State Key Laboratory of Fine Chemicals, Department of ChemistrySchool of Chemical Engineering Dalian University of TechnologyDalian 116024 China
Department of ChemistryTsinghua UniversityBeijing 100084 China
SEU-FEI Nano-Pico CenterKey Laboratory of MEMS of Ministry of EducationCollaborative Innovation Center for Micro/Nano FabricationDevice and System Southeast UniversityNanjing 210096 China
State Key Laboratory of CatalysisDalian Institute of Chemical Physics Chinese Academy of SciencesDalian 116023 China

§ Hongyu Jing and Zhengyan Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Impeding high temperature sintering is challengeable for synthesis of carbon-supported single-atom catalysts (C-SACs), which requires high-cost precursor and strictly-controlled procedures. Herein, by virtue of the ultrastrong polarity of salt melts, sintering of metal atoms is effectively suppressed. Meanwhile, doping with inorganic sulfur anions not only produces sufficient anchoring sites to achieve high loading of atomically dispersed Co up to 13.85 wt.%, but also enables their electronic and geometric structures to be well tuned. When served as a cathode catalyst in dye-sensitized solar cells, the C-SAC with Co-N4-S2 moieties exhibits high activity towards the iodide reduction reaction (IRR), achieving a higher power conversion efficiency than that of conventional Pt counterpart. Density function theory (DFT) calculations revealed that the superior IRR activity was ascribed to the unique structure of Co-N4-S2 moieties with lower reaction barriers and moderate binding energy of iodine on the Co center, which was beneficial to I2 dissociation.

Electronic Supplementary Material

Download File(s)
12274_2021_3331_MOESM1_ESM.pdf (5.9 MB)

References

1

 O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737−740.

2

 Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G. Rational screening low-cost counter electrodes for dye-sensitized solar cells. Nat. Commun. 2013, 4, 1583.

3

 Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634−641.

4

 Matheu, R.; Gutierrez-Puebla, E.; Monge, M. Á.; Diercks, C. S.; Kang, J.; Prévot, M. S.; Pei, X. K.; Hanikel, N.; Zhang, B.; Yang, P. D. et al. Three-dimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 2019, 141, 17081−17085.

5

 Xie, C. L.; Niu, Z. Q.; Kim, D.; Li, M. F.; Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184−1249.

6

 Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856−1866.

7

 Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842−1855.

8

 Chen, S. P.; Li, M. F.; Gao, M. Y.; Jin, J. B.; van Spronsen, M. A.; Salmeron, M. B.; Yang, P. D. High-performance Pt-Co nanoframes for fuel-cell electrocatalysis. Nano Lett. 2020, 20, 1974−1979.

9
Ou, H. H.; Wang, D. S.; Li, Y. D. How to select effective electrocatalysts: Nano or single atom? Nano Select, in press, DOI: 10.1002/nano.202000239.https://doi.org/10.1002/nano.202000239
10
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res., in press, DOI: 10.1007/s12274-020-3244-4.https://doi.org/10.1007/s12274-020-3244-4
11

Yang, T.; Song, T. T.; Zhou, J.; Wang, S. J.; Chi, D. Z.; Shen, L.; Yang, M.; Feng, Y. P. High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano Energy 2020, 68, 104304.

12

Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Angew. Chem., Int. Ed. 2020, 59, 6224−6229.

13

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082−3087.

14

Hoang, S.; Guo, Y. B.; Binder, A. J.; Tang, W. X.; Wang, S. B.; Liu, J. Y.; Tran, H.; Lu, X. X.; Wang, Y.; Ding, Y. et al. Activating low- temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nat. Commun. 2020, 11, 1062.

15

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086−4093.

16

Gawande, M. B; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231−2259.

17

Li, Y. G.; Wu, Z. S.; Lu, P. F.; Wang, X.; Liu, W.; Liu, Z. B.; Ma, J. Y.; Ren, W. C.; Jiang, Z.; Bao, X. H. High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction. Adv. Sci. 2020, 7, 1903089.

18

Yang, J. R; Li, W. H; Wang, D. S.; Li, Y. D. Electronic metal- support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

19
Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal- organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202012798.https://doi.org/10.1002/anie.202012798
20
Yang, J. R; Li, W. H; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct., in press, DOI: 10.1002/sstr.202000051.https://doi.org/10.1002/sstr.202000051
21

Zang, W. J.; Kou, Z. K.; Pennycook, S. J.; Wang, J. Heterogeneous single atom electrocatalysis, where "singles" are "married". Adv. Energy Mater. 2020, 10, 1903181.

22

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165−3182.

23

Rong, X.; Wang, H. J.; Lu, X. L.; Si, R.; Lu, T. B. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961−1965.

24

Fang, S.; Zhu, X. R.; Liu, X. K.; Gu, J.; Liu, W.; Wang, D. H.; Zhang, W.; Lin, Y.; Lu, J. L.; Wei, S. Q. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 2020, 11, 1029.

25

Bayatsarmadi, B.; Zheng, Y.; Vasileff, A.; Qiao, S. Z. Recent advances in atomic metal doping of carbon-based nanomaterials for energy conversion. Small 2017, 13, 1700191.

26

Shi, Y. T.; Zhao, C. Y.; Wei, H. S.; Guo, J. H.; Liang, S. X.; Wang, A. Q.; Zhang, T.; Liu, J. Y.; Ma, T. L. Single-atom catalysis in mesoporous photovoltaics: The principle of utility maximization. Adv. Mater. 2014, 26, 8147−8153.

27

Cui, X. J.; Xiao, J. P.; Wu, Y. H.; Du, P. P.; Si, R.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Zhang, W. H.; Deng, D. H. et al. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2016, 55, 6708−6712.

28

Liu, J. C.; Xiao, H.; Li, J. Constructing high-loading single-atom/ cluster catalysts via an electrochemical potential window strategy. J. Am. Chem. Soc. 2020, 142, 3375−3383.

29

Zhu, Y. Z.; Peng, W. C.; Li, Y.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods 2019, 3, 1800438.

30

Sharifi, T.; Gracia-Espino, E.; Chen, A. R.; Hu, G. Z.; Wågberg, T. Oxygen reduction reactions on single- or few-atom discrete active sites for heterogeneous catalysis. Adv. Energy Mater. 2020, 10, 1902084.

31

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067−2080.

32

Zhang, H. Y.; Tian, W. J.; Duan, X. G.; Sun, H. Q.; Liu, S. M.; Wang, S. B. Catalysis of a single transition metal site for water oxidation: From mononuclear molecules to single atoms. Adv. Mater. 2020, 32, e1904037.

33

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

34
Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater., in press, DOI: 10.1007/s40843-020-1443-8.https://doi.org/10.1007/s40843-020-1443-8
35

Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443−5450.

36

Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni Atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442−3448.

37

Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206−6214.

38

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705−2709.

39

Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651−10657.

40

Liu, X. F.; Fechler, N.; Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 2013, 42, 8237−8265.

41

Liu, X. F.; Giordano, C.; Antonietti, M. A facile molten-salt route to graphene synthesis. Small 2014, 10, 193–200.

42

Niu, W. H.; Li, L. G.; Wang, N.; Zeng, S. B.; Liu, J.; Zhao, D. K.; Chen, S. W. Volatilizable template-assisted scalable preparation of honeycomb-like porous carbons for efficient oxygen electroreduction. J. Mater. Chem. A 2016, 4, 10820−10827.

43

Liu, X. F.; Antonietti, M. Moderating black powder chemistry for the synthesis of doped and highly porous graphene nanoplatelets and their use in electrocatalysis. Adv. Mater. 2013, 25, 6284−6290.

44

Liu, X. F.; Antonietti, M. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets. Carbon 2014, 69, 460−466.

45

Fechler, N.; Fellinger, T. P.; Antonietti, M. "Salt templating": A simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Adv. Mater. 2013, 25, 75−79.

46

Yu, Z. F.; Wang, X. Z.; Hou, Y. N.; Pan, X.; Zhao, Z. B.; Qiu, J. S. Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization. Carbon 2017, 117, 376−382.

47

Yu, Z. F.; Wang, X. Z.; Song, X. D.; Liu, Y.; Qiu, J. S. Molten salt synthesis of nitrogen-doped porous carbons for hydrogen sulfide adsorptive removal. Carbon 2015, 95, 852−860.

48

Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355−359.

49

Docters, T.; Chovelon, J. M.; Herrmann, J. M.; Deloume, J. P. Syntheses of TiO2 photocatalysts by the molten salts method: Application to the photocatalytic degradation of prosulfuron®. Appl. Catal. B Environ. 2004, 50, 219−226.

50

Wang, W.; Chen, W. H.; Miao, P. Y.; Luo, J.; Wei, Z. D.; Chen, S. L. NaCl crystallites as dual-functional and water-removable templates to synthesize a three-dimensional graphene-like macroporous Fe-N-C catalyst. ACS Catal. 2017, 7, 6144−6149.

51

Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N. A.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

52

Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994−5999.

53

Jiang, J. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508−3514.

54

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat Commun. 2020, 11, 3049.

55

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

56

Cheng, Y.; Zhao, S. Y.; Li, H. B.; He, S.; Veder, J. P.; Johannessen, B.; Xiao, J. P.; Lu, S. F.; Pan, J.; Chisholm, M. F. et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl. Catal. B Environ. 2019, 243, 294−303.

57

Li, J.; Chen, S. G.; Yang, N.; Deng, M. M.; Ibraheem, S.; Deng, J. H.; Li, J.; Li, L.; Wei, Z. D. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem., Int. Ed. 2019, 58, 7035−7039.

58

Zuo, Q.; Liu, T. T.; Chen, C. S.; Ji, Y.; Gong, X. Q.; Mai, Y. Y.; Zhou, Y. F. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2019, 58, 10198−10203.

Nano Research
Pages 4025-4032
Cite this article:
Jing H, Zhao Z, Zhang C, et al. Tuned single atom coordination structures mediated by polarization force and sulfur anions for photovoltaics. Nano Research, 2021, 14(11): 4025-4032. https://doi.org/10.1007/s12274-021-3331-1
Topics:

736

Views

16

Crossref

18

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 09 December 2020
Revised: 10 January 2021
Accepted: 11 January 2021
Published: 01 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return