AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives

Samrat SarkarSwagata RoyYufeng Zhao( )Jiujun Zhang( )
Institute for Sustainable Energy & College of SciencesShanghai UniversityShanghai200444China
Show Author Information

Graphical Abstract

Abstract

In the recent times sodium ion batteries (SIBs) have come to the forefront as an economic and resourceful alternative to lithium-ion batteries (LIBs) for powering portable electronic devices and large-scale grid storage. As the specific capacity, energy density and long cycle life of batteries depend upon the performance of anode materials; their quest is the ultimate need of the hour. Among the anode materials, the semimetallic pnictogens (As, Sb, Bi) and their compounds offer high gravimetric/volumetric capacities, but suffer from undesired volume expansion and inferior electrical conductivity. Herein, this paper reviews the recent progress in semimetallic pnictogens as alloying anodes and their compounds mainly as conversion-alloying anodes. Various debatable sodiation mechanisms (intercalation or alloying) have been presented with emphasis on in situ/ex situ advanced characterization methods well supported by theoretical modeling and calculations. The reviewed electrochemical reaction mechanisms, coherent structural designs and engineering provide a vital understanding of the electrochemical processes of Na+ ion storage. The existing challenges and perspectives are also presented, and several research directions are proposed from the aspects of special morphological design, employing conductive substrates, electrolyte additives and reducing particle size for technical and commercial success of SIBs.

References

1

Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.

2

Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 2014, 114, 11788–11827.

3

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

4

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

5

Duan, J.; Tang, X.; Dai, H. F.; Yang, Y.; Wu, W. Y.; Wei, X. Z.; Huang, Y. H. Building safe lithium-ion batteries for electric vehicles: A review. Electrochem. Energy Rev. 2020, 3, 1–42.

6

Wang, T. Y.; Su, D. W.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. Electrode materials for sodium ion batteries: Considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 2018, 1, 200–237.

7

Yang, D.; Tan, H. T.; Rui, X. H.; Yu, Y. Electrode materials for rechargeable zinc-ion and zinc-air batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 395–427.

8

Lokhande, P. E.; Chavan, U. S.; Pandey, A. Materials and fabrication methods for electrochemical supercapacitors: Overview. Electrochem. Energy Rev. 2020, 3, 155–186.

9

Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

10

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

11

Li, L.; Zheng, Y.; Zhang, S. L.; Yang, J. P.; Shao, Z. P.; Guo, Z. P. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340.

12

Song, S. F.; Kotobuki, M.; Zheng, F.; Xu, C. H.; Savilov, S. V.; Hu, N.; Lu, L.; Wang, Y.; Li, W. D. Z. A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. J. Mater. Chem. A 2017, 5, 6424–6431.

13

Huang, J. Q.; Lin, X. Y.; Tan, H.; Zhang, B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv. Energy Mater. 2018, 8, 1703496.

14

Zhao, Y. X.; Ren, X. C.; Xing, Z. J.; Zhu, D. M.; Tian, W. F.; Guan, C. R.; Yang, Y.; Qin, W. M.; Wang, J.; Zhang, L. L. et al. In situ formation of hierarchical bismuth nanodots/graphene nanoarchitectures for ultrahigh‐rate and durable potassium‐ion storage. Small 2020, 16, 1905789.

15

Xin, S.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A high‐energy room‐ temperature sodium‐sulfur battery. Adv. Mater. 2014, 26, 1261– 1265.

16

Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.

17

Wu, S. C.; Qiao, Y.; Yang, S. X.; Ishida, M.; He, P.; Zhou, H. S. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes. Nat. Commun. 2017, 8, 15607.

18

Kim, J.; Park, H.; Lee, B.; Seong, W. M.; Lim, H. D.; Bae, Y.; Kim, H.; Kim, W. K.; Ryu, K. H.; Kang, K. Dissolution and ionization of sodium superoxide in sodium–oxygen batteries. Nat. Commun. 2016, 7, 10670.

19

Lin, M. C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D. Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324–328.

20

Wu, Y. P.; Gong, M.; Lin, M. C.; Yuan, C. Z.; Angell, M.; Huang, L.; Wang, D. Y.; Zhang, X. D.; Yang, J.; Hwang, B. J. et al. 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum‐ion battery. Adv. Mater. 2016, 28, 9218–9222.

21

Muldoon, J.; Bucur, C. B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 2014, 114, 11683–11720.

22

Zhong, Y. J.; Xu, X. M.; Veder, J. P.; Shao, Z. P. Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries. iScience 2020, 23, 100943.

23

Park, J.; Park, M.; Nam, G.; Lee, J. S.; Cho, J. All‐solid‐state cable‐ type flexible zinc–air battery. Adv. Mater. 2015, 27, 1396–1401.

24

Pei, P. C.; Wang, K. L.; Ma, Z. Technologies for extending zinc–air battery's cyclelife: A review. Appl. Energy 2014, 128, 315–324.

25

Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M. D.; Schubert, U. S. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 2015, 527, 78–81.

26

Ding, Y.; Zhang, C. K.; Zhang, L. Y.; Zhou, Y. G.; Yu, G. H. Molecular engineering of organic electroactive materials for redox flow batteries. Chem. Soc. Rev. 2018, 47, 69–103.

27

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

28

Pacala, S.; Socolow, R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 2004, 305, 968–972.

29

Ding, Y. L.; Cano, Z. P.; Yu, A. P.; Lu, J.; Chen, Z. W. Automotive li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 1–28.

30

Grosjean, C.; Miranda, P. H.; Perrin, M.; Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sust. Energy Rev. 2012, 16, 1735–1744.

31
Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High‐capacity anode materials for sodium‐ion batteries. Chem. —Eur. J. 2014, 20, 11980–11992. https://doi.org/10.1002/chem.201402511
32

Roberts, S.; Kendrick, E. The re-emergence of sodium ion batteries: Testing, processing, and manufacturability. Nanotechnol. Sci. Appl. 2018, 11, 23–33.

33

Zhang, H.; Hasa, I.; Passerini, S. Sodium‐ion batteries: Beyond insertion for Na‐ion batteries: Nanostructured alloying and conversion anode materials (Adv. Energy Mater. 17/2018). Adv. Energy Mater. 2018, 8, 1870082.

34

Muñoz-Márquez, M. Á.; Saurel, D.; Gómez-Cámer, J. L.; Casas-Cabanas, M.; Castillo-Martínez, E.; Rojo, T. Na-ion batteries for large scale applications: A review on anode materials and solid electrolyte interphase formation. Adv. Energy Mater. 2017, 7, 1700463.

35

Palomares, V.; Casas-Cabanas, M.; Castillo-Martínez, E.; Han, M. H.; Rojo, T. Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 2013, 6, 2312–2337.

36

Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. Sodium‐ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 2018, 8, 1800079.

37

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium ion batteries. Chem. Rev. 2014, 114, 11636– 11682.

38

Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. From lithium to sodium: Cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J. Nanotechnol. 2015, 6, 1016–1055.

39

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x < –1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

40

Nagelberg, A. S.; Worrell, W. L. A thermodynamic study of sodium-intercalated TaS2 and TiS2. J. Solid State Chem. 1979, 29, 345–354.

41

Parant, J. P.; Olazcuaga, R.; Devalette, M.; Fouassier, C.; Hagenmuller, P. Sur quelques nouvelles phases de formule NaxMnO2 (x ≤ 1). J. Solid State Chem. 1971, 3, 1–11.

42

Kim, T. H.; Park, J. S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H. K. The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2012, 2, 860–872.

43

Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

44

Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium–air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

45

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751– 11787.

46

Chen, M. Z.; Liu, Q. N.; Wang, S. W.; Wang, E. H.; Guo, X. D.; Chou, S. L. High‐abundance and low‐cost metal‐based cathode materials for sodium‐ion batteries: Problems, progress, and key technologies. Adv. Energy Mater. 2019, 9, 1803609.

47

Chu, S. Y.; Zhong, Y. J.; Liao, K. M.; Shao, Z. P. Layered Co/Ni-free oxides for sodium ion battery cathode materials. Curr. Opin. Green Sustain. Chem. 2019, 17, 29–34.

48

Caballero, A.; Hernán, L.; Morales, J.; Sánchez, L.; Peña, J. S.; Aranda, M. A. G. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. J. Mater. Chem. 2002, 12, 1142–1147.

49

Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.

50

Yuan, Z.; Wu, X. H.; Wu, W. W.; Wang, K. T. Synthesis and electrochemical performance of Na0.7Fe0.7Mn0.3O2 as a cathode material for Na-ion battery. Ceram. Int. 2014, 40, 13679–13682.

51

Zhu, H. L.; Lee, K. T.; Hitz, G. T.; Han, X. G.; Li, Y. Y.; Wan, J. Y.; Lacey, S.; von Wald Cresce, A.; Xu, K.; Wachsman, E. et al. Free-standing Na2/3Fe1/2Mn1/2O2@graphene film for a sodium ion battery cathode. ACS Appl. Mater. Interfaces 2014, 6, 4242–4247.

52

Kalluri, S.; Seng, K. H.; Pang, W. K.; Guo, Z. P.; Chen, Z. X.; Liu, H. K.; Dou, S. X. Electrospun P2-type Na2/3(Fe1/2Mn1/2)O2 hierarchical nanofibers as cathode material for sodium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 8953–8958.

53

Yoshida, H.; Yabuuchi, N.; Komaba, S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochem. Commun. 2013, 34, 60–63.

54

Kubota, K.; Asari, T.; Yoshida, H.; Yaabuuchi, N.; Shiiba, H.; Nakayama, M.; Komaba, S. Understanding the structural evolution and redox mechanism of a NaFeO2–NaCoO2 solid solution for sodium‐ion batteries. Adv. Funct. Mater. 2016, 26, 6047–6059.

55

Kim, D.; Lee, E.; Slater, M.; Lu, W. Q.; Rood, S.; Johnson, C. S. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application. Electrochem. Commun. 2012, 18, 66–69.

56

Talaie, E.; Duffort, V.; Smith, H. L.; Fultz, B.; Nazar, L. F. Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci. 2015, 8, 2512–2523.

57

Vassilaras, P.; Toumar, A. J.; Ceder, G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochem. Commun. 2014, 38, 79–81.

58

Le Poul, N.; Baudrin, E.; Morcrette, M.; Gwizdala, S.; Masquelier, C.; Tarascon, J. M. Development of potentiometric ion sensors based on insertion materials as sensitive element. Solid State Ionics 2003, 159, 149–158.

59

Wongittharom, N.; Wang, C. H.; Wang Y. C.; Yang C. H.; Chang J. K. Ionic liquid electrolytes with various sodium solutes for rechargeable Na/NaFePO4 batteries operated at elevated temperatures. ACS Appl. Mater. Interfaces 2014, 6, 17564–17570.

60

Moring, J.; Kostiner, E. The crystal structure of NaMnPO4. J. Solid State Chem. 1986, 61, 379–383.

61

Koleva, V.; Boyadzhieva, T.; Zhecheva, E.; Nihtianova, D.; Simova, S.; Tyuliev, G.; Stoyanova, R. Precursor-based methods for low-temperature synthesis of defectless NaMnPO4 with an olivine- and maricite-type structure. CrystEngComm 2013, 15, 9080–9089.

62

Zhou, W. D.; Xue, L. G.; Lü, X. J.; Gao, H. C.; Li, Y. T.; Xin, S.; Fu, G. T.; Cui, Z. M.; Zhu, Y.; Goodenough, J. B. NaxMV(PO4)3 (M= Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 2016, 16, 7836–7841.

63

Jian, Z. L.; Zhao, L.; Pan, H. L.; Hu, Y. S.; Li, H.; Chen, W.; Chen, L. Q. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 2012, 14, 86–89.

64

Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L. M.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu, C. 3D electronic channels wrapped large‐sized Na3V2(PO4)3 as flexible electrode for sodium‐ion batteries. Small 2018, 14, 1702864.

65

Uebou, Y.; Okada, S.; Yamaki, J. I. Electrochemical insertion of lithium and sodium into (MoO2)2P2O7. J. Power Sources 2003, 115, 119–124.

66

Adam, L.; Guesdon, A.; Raveau, B. A new lithium manganese phosphate with an original tunnel structure in the A2MP2O7 family. J. Solid State Chem. 2008, 181, 3110–3115.

67

Wessells, C. D.; McDowell, M. T.; Peddada, S. V.; Pasta, M.; Huggins, R. A.; Cui, Y. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. ACS Nano 2012, 6, 1688–1694.

68

Wessells, C. D.; Peddada, S. V.; McDowell, M. T.; Huggins, R. A.; Cui, Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 2011, 159, A98–A103.

69

Wessells, C. D.; Huggins, R. A.; Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2011, 2, 550.

70

Wang, S. W.; Wang, L. J.; Zhu, Z. Q.; Hu, Z.; Zhao, Q.; Chen, J. All organic sodium‐ion batteries with Na4C8H2O6. Angew. Chem. 2014, 126, 6002–6006.

71

Chihara, K.; Chujo, N.; Kitajou, A.; Okada, S. Cathode properties of Na2C6O6 for sodium ion batteries. Electrochim. Acta 2013, 110, 240–246.

72

Zhao, R. R.; Zhu, L. M.; Cao, Y. L.; Ai, X. P.; Yang, H. X. An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries. Electrochem. Commun. 2012, 21, 36–38.

73

Stevens, D. A.; Dahn, J. R. An in situ small‐angle X‐ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J. Electrochem. Soc. 2000, 147, 4428–4431.

74

Stevens, D. A.; Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811.

75

Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium‐ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.

76

Luo, X. F.; Yang, C. H.; Peng, Y. Y.; Pu, N. W.; Ger, M. D.; Hsieh, C. T.; Chang, J. K. Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 10320–10326.

77

Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 2013, 57, 202–208.

78

Legrain, F.; Malyi, O.; Manzhos, S. Insertion energetics of lithium, sodium, and magnesium in crystalline and amorphous titanium dioxide: A comparative first-principles study. J. Power Sources 2015, 278, 197–202.

79

Su, D. W.; Dou, S. X.; Wang, G. X. Anatase TiO2: Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 2015, 27, 6022–6029.

80

Ni, Q.; Dong, R. Q.; Bai, Y.; Wang, Z. H.; Ren, H. X.; Sean, S.; Wu, F.; Xu, H. J.; Wu, C. Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Stor. Mater. 2020, 25, 903–911.

81

DiVincenzo, D. P.; Mele, E. J. Cohesion and structure in stage-1 graphite intercalation compounds. Phys. Rev. B 1985, 32, 2538– 2553.

82

Alcántara, R.; Jiménez-Mateos, J. M.; Lavela, P.; Tirado, J. L. Carbon black: A promising electrode material for sodium ion batteries. Electrochem. Commun. 2001, 3, 639–642.

83

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

84

Hasa, I.; Dou, X. W.; Buchholz, D.; Shao-Horn, Y.; Hassoun, J.; Passerini, S.; Scrosati, B. A sodium ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J. Power Sources 2016, 310, 26–31.

85

Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K. Y.; Park, M. S.; Yoon, W. S.; Kang, K. Sodium intercalation chemistry in graphite. Energy Environ. Sci. 2015, 8, 2963–2969.

86

Xiao, B. W.; Rojo, T.; Li, X. L. Hard carbon as sodium‐ion battery anodes: Progress and challenges. ChemSusChem 2019, 12, 133– 144.

87

Wang, Z. H.; Wang, X. R.; Bai, Y.; Yang, H. Y.; Li, Y.; Guo, S. N.; Chen, G. H.; Li, Y.; Xu, H. J.; Wu, C. Developing an interpenetrated porous and ultrasuperior hard-carbon anode via a promising molten-salt evaporation method. ACS Appl. Mater. Interfaces 2020, 12, 2481–2489.

88

Wu, F.; Zhang, M. H.; Bai, Y.; Wang, X. R.; Dong, R. Q.; Wu, C. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 12554–12561.

89

Zheng, P.; Liu, T.; Yuan, X. Y.; Zhang, L. F.; Liu, Y.; Huang, J. F.; Guo, S. W. Enhanced performance by enlarged nano-pores of holly leaf-derived lamellar carbon for sodium ion battery anode. Sci. Rep. 2016, 6, 26246.

90

Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129.

91

Li, Y.; Yuan, Y. F.; Bai, Y.; Liu, Y. C.; Wang, Z. H.; Li, L. M.; Wu, F.; Amine, K.; Wu, C.; Lu, J. Insights into the Na+ storage mechanism of phosphorus‐functionalized hard carbon as ultrahigh capacity anodes. Adv. Energy Mater. 2018, 8, 1702781.

92

Wu, F.; Dong, R. Q.; Bai, Y.; Li, Y.; Chen, G. H.; Wang, Z. H.; Wu, C. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 21335–21342.

93

Zhou, W. D.; Li, Y. T.; Xin, S.; Goodenough, J. B. Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 2017, 3, 52–57.

94

Feng, L. L.; Li, G. D.; Liu, Y. P.; Wu, Y. Y.; Chen, H.; Wang, Y.; Zou, Y. C.; Wang, D. J.; Zou, X. X. Carbon-armored Co9S8 nanoparticles as all-ph efficient and durable H2-evolving electrocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 980–988.

95

Fullenwarth, J.; Darwiche, A.; Soares, A.; Donnadieu, B.; Monconduit, L. NiP3: A promising negative electrode for Li- and Na-ion batteries. J. Mater. Chem. A 2014, 2, 2050–2059.

96

Li, Y.; Qian, J.; Zhang, M. H.; Wang, S.; Wang, Z. H.; Li, M. S.; Bai, Y.; An, Q. Y.; Xu, H. J.; Wu, F. et al. Co‐construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium‐ion batteries. Adv. Mater. 2020, 32, 2005802.

97

Li, Y.; Xu, Y. H.; Wang, Z. H.; Bai, Y.; Zhang, K.; Dong, R. Q.; Gao, Y. N.; Ni, Q.; Wu, F.; Liu, Y. J. et al. Stable carbon–selenium bonds for enhanced performance in tremella‐like 2D chalcogenide battery anode. Adv. Energy Mater. 2018, 8, 1800927.

98

Jing, W. T.; Yang, C. C.; Jiang, Q. Recent progress on metallic Sn- and Sb-based anodes for sodium ion batteries. J. Mater. Chem. A 2020, 8, 2913–2933.

99

Liang, S. Z.; Cheng, Y. J.; Zhu, J.; Xia, Y. G.; Müller‐Buschbaum, P. A chronicle review of nonsilicon (Sn, Sb, Ge)‐based lithium/sodium‐ ion battery alloying anodes. Small Methods 2020, 4, 2000218.

100

Yin, X. P.; Sarkar, S.; Shi, S. S.; Huang, Q. A.; Zhao, H. B.; Yan, L. M.; Zhao, Y. F.; Zhang, J. J. Recent progress in advanced organic electrode materials for sodium‐ion batteries: Synthesis, mechanisms, challenges and perspectives. Adv. Funct. Mater. 2020, 30, 1908445.

101

He, X.; Bi, L. N.; Li, Y.; Xu, C. G.; Lin, D. M. CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium ion batteries. Electrochim. Acta 2020, 332, 135453.

102

Khan, M.; Ahmad, N.; Lu, K. W.; Sun, Z. H.; Wei, C. H.; Zheng, X. J.; Yang, R. Z. Nitrogen-doped carbon derived from onion waste as anode material for high performance sodium ion battery. Solid State Ionics 2020, 346, 115223.

103

Qian, J. F.; Xiong, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 2014, 14, 1865–1869.

104

Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494–502.

105

Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF‐ derived N‐doped microporous carbon as a superior anode for sodium‐ion battery. Adv. Mater. 2017, 29, 1605820.

106

Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na‐ion batteries. Adv. Mater. 2014, 26, 4139– 4144.

107

Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half‐cell and full‐cell applications of highly stable and binder‐free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.

108

Pumera, M.; Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299.

109

Zhao, M. M.; Zhao, Q. X.; Qiu, J. Q.; Xue, H. G.; Pang, H. Tin-based nanomaterials for electrochemical energy storage. RSC Adv. 2016, 6, 95449–95468.

110

Li, Z.; Ding, J.; Mitlin, D. Tin and tin compounds for sodium ion battery anodes: Phase transformations and performance. Acc. Chem. Res. 2015, 48, 1657–1665.

111

Ying, H. J.; Han, W. Q. Metallic Sn‐based anode materials: Application in high‐performance lithium‐ion and sodium‐ion batteries. Adv. Sci. 2017, 4, 1700298.

112

Huang, B.; Pan, Z. F.; Su, X. Y.; An, L. Tin-based materials as versatile anodes for alkali (earth)-ion batteries. J. Power Sources 2018, 395, 41–59.

113

Lim, Y. R.; Shojaei, F.; Park, K.; Jung, C. S.; Park, J.; Cho, W. I.; Kang, H. S. Arsenic for high-capacity lithium- and sodium ion batteries. Nanoscale 2018, 10, 7047–7057.

114

Liu, X. H.; Zhang, S. L.; Guo, S. Y.; Cai, B.; Yang, S. A.; Shan, F.; Pumera, M.; Zeng, H. B. Advances of 2D bismuth in energy sciences. Chem. Soc. Rev. 2020, 49, 263–285.

115

Ji, B. F.; Zhang, F.; Song, X. H.; Tang, Y. B. A novel potassium‐ ion‐based dual‐ion battery. Adv. Mater. 2017, 29, 1700519.

116

Jia, H.; Dirican, M.; Aksu, C.; Sun, N.; Chen, C.; Zhu, J. D.; Zhu, P.; Yan, C. Y.; Li, Y.; Ge, Y. Q. et al. Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium ion battery. J. Colloid Interface Sci. 2019, 536, 655–663.

117

Pan, J.; Yu, K.; Mao, H. Z.; Li, L. L.; Zhang, Y. C.; Li, Y. L.; Ferreira, P. J.; Yang, J. Crystalline Sb or Bi in amorphous Ti-based oxides as anode materials for sodium storage. Chem. Eng. J. 2020, 380, 122624.

118

Ares, P.; Aguilar‐Galindo, F.; Rodríguez‐San‐Miguel, D.; Aldave, D. A.; Díaz‐Tendero, S.; Alcamí, M.; Martín, F.; Gómez‐Herrero, J.; Zamora, F. Mechanical isolation of highly stable antimonene under ambient conditions. Adv. Mater. 2016, 28, 6332–6336.

119

Beladi-Mousavi, S. M.; Pumera, M. 2D-pnictogens: Alloy-based anode battery materials with ultrahigh cycling stability. Chem. Soc. Rev. 2018, 47, 6964–6989.

120

Mortazavi, M.; Ye, Q. J.; Birbilis, N.; Medhekar, N. V. High capacity Group-15 alloy anodes for Na-ion batteries: Electrochemical and mechanical insights. J. Power Sources 2015, 285, 29–36.

121

Songster, J.; Pelton, A. D. The As-Na (arsenic-sodium) system. J. Phase Equilib. 1993, 14, 240–242.

122

Songster, J.; Pelton, A. D. The Na-Sb (sodium-antimony) system. J. Phase Equilib. 1993, 14, 250–255.

123

Sangster, J.; Pelton, A. D. The Bi-Na (bismuth-sodium) system. J. Phase Equilib. 1991, 12, 451–456.

124

Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity li-ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309.

125

Kravchyk, K.; Protesescu, L.; Bodnarchuk, M. I.; Krumeich, F.; Yarema, M.; Walter, M.; Guntlin, C.; Kovalenko, M. V. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance li-ion battery anodes. J. Am. Chem. Soc. 2013, 135, 4199–4202.

126

Wang, X. Y.; Fan, L.; Gong, D. C.; Zhu, J.; Zhang, Q. F.; Lu, B. G. Core–shell Ge@graphene@TiO2 nanofibers as a high‐capacity and cycle‐stable anode for lithium and sodium ion battery. Adv. Funct. Mater. 2016, 26, 1104–1111.

127

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

128

Xu, H.; Qin, L. G.; Chen, J.; Wang, Z. K.; Zhang, W.; Zhang, P. G.; Tian, W. B.; Zhang, Y.; Guo, X. L.; Sun, Z. M. Toward advanced sodium ion batteries: A wheel-inspired yolk–shell design for large-volume-change anode materials. J. Mater. Chem. A 2018, 6, 13153–13163.

129

Li, X. Y.; Ni, J. F.; Savilov, S. V.; Li, L. Materials based on antimony and bismuth for sodium storage. Chem. —Eur. J. 2018, 24, 13719–13727.

130

Lao, M. M.; Zhang, Y.; Luo, W. B.; Yan, Q. Y.; Sun, W. P.; Dou, S. X. Alloy‐based anode materials toward advanced sodium‐ion batteries. Adv. Mater. 2017, 29, 1700622.

131

Besenhard, J. O.; Fritz, H. P. Reversibles elektrochemisches legieren von metallen der v. Hauptgruppe in organischen Li+— Lösungen. Electrochim. Acta 1975, 20, 513–517.

132

Park, C. M. Electrochemical lithium quasi-intercalation with arsenic. J. Solid State Electrochem. 2016, 20, 517–523.

133

Chen, J. B.; Zhao, H. L.; Chen, N.; Wang, X. C.; Wang, J.; Zhang, R.; Jin, C. Q. A novel FeAs anode material for lithium ion battery. J. Power Sources 2012, 200, 98–101.

134

Benzidi, H.; Lakhal, M.; Garara, M.; Abdellaoui, M.; Benyoussef, A.; El kenz, A.; Mounkachi, O. Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: Density functional theory. Phys. Chem. Chem. Phys. 2019, 21, 19951–19962.

135

Hays, K. A.; Banek, N. A.; Wagner, M. J. High performance arsenic: Multiwall carbon nanotube composite anodes for Li-ion batteries. J. Electrochem. Soc. 2017, 164, A1635–A1643.

136

Subramanyan, K.; Aravindan, V. Stibium: A promising electrode toward building high-performance Na-ion full-cells. Chem 2019, 5, 3096–3126.

137

Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805– 20811.

138

Kong, B.; Zu, L. H.; Peng, C. X.; Zhang, Y.; Zhang, W.; Tang, J.; Selomulya, C.; Zhang, L. D.; Chen, H. X.; Wang, Y. et al. Direct superassemblies of freestanding metal–carbon frameworks featuring reversible crystalline-phase transformation for electrochemical sodium storage. J. Am. Chem. Soc. 2016, 138, 16533–16541.

139

Caputo, R. An insight into sodiation of antimony from first-principles crystal structure prediction. J. Electron. Mater. 2016, 45, 999–1010.

140

Tian, W. F.; Zhang, S. L.; Huo, C. X.; Zhu, D. M.; Li, Q. W.; Wang, L.; Ren, X. C.; Xie, L.; Guo, S. Y.; Chu, P. K. et al. Few-layer antimonene: Anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries. ACS Nano 2018, 12, 1887–1893.

141

Upadhyay, S.; Srivastava, P. Modelling of antimonene as an anode material in sodium ion battery: A first-principles study. Mater. Chem. Phys. 2020, 241, 122381.

142

Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352.

143

Su, J. C.; Duan, T. F.; Li, W. K.; Xiao, B.; Zhou, G.; Pei, Y.; Wang, X. Y. A first-principles study of 2D antimonene electrodes for Li ion storage. Appl. Surf. Sci. 2018, 462, 270–275.

144

Sengupta, A.; Frauenheim, T. Lithium and sodium adsorption properties of monolayer antimonene. Mater. Today Energy 2017, 5, 347–354.

145

Wang, X. X.; Tang, C. M.; Zhou, X. F.; Zhu, W. H.; Cheng, C. Theoretical investigating of graphene/antimonene heterostructure as a promising high cycle capability anodes for fast-charging lithium ion batteries. Appl. Surf. Sci. 2019, 491, 451–459.

146

Su, J. C.; Li, W. K.; Duan, T. F.; Xiao, B.; Wang, X. Y.; Pei, Y.; Zeng, X. C. Graphene/antimonene/graphene heterostructure: A potential anode for sodium ion batteries. Carbon 2019, 153, 767–775.

147

He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk. Nano Lett. 2014, 14, 1255–1262.

148

Gu, J. N.; Du, Z. G.; Zhang, C.; Ma, J. G.; Li, B.; Yang, S. B. Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv. Energy Mater. 2017, 7, 1700447.

149

Hou, H. S.; Jing, M. J.; Zhang, Y.; Chen, J.; Huang, Z. D.; Ji, X. B. Cypress leaf-like Sb as anode material for high-performance sodium ion batteries. J. Mater. Chem. A 2015, 3, 17549–17552.

150

Song, J. H.; Yan, P. F.; Luo, L. L.; Qi, X. G.; Rong, X. H.; Zheng, J. M.; Xiao, B. W.; Feng, S.; Wang, C. M.; Hu, Y. S. et al. Yolk-shell structured Sb@C anodes for high energy Na-ion batteries. Nano Energy 2017, 40, 504–511.

151

Li, H. M.; Wang, K. L.; Zhou, M.; Li, W.; Tao, H. W.; Wang, R. X.; Cheng, S. J.; Jiang, K. Facile tailoring of multidimensional nanostructured Sb for sodium storage applications. ACS Nano 2019, 13, 9533–9540.

152

Liu, Y.; Zhou, B.; Liu, S.; Ma, Q. S.; Zhang, W. H. Galvanic replacement synthesis of highly uniform Sb nanotubes: Reaction mechanism and enhanced sodium storage performance. ACS Nano 2019, 13, 5885–5892.

153

Bian, X.; Dong, Y.; Zhao, D. D.; Ma, X. T.; Qiu, M. D.; Xu, J. Z.; Jiao, L. F.; Cheng, F. Y.; Zhang, N. Microsized antimony as a stable anode in fluoroethylene carbonate containing electrolytes for rechargeable lithium-/sodium ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 3554–3562.

154

Li, X. Y.; Sun, M. L.; Ni, J. F.; Li, L. Template‐free construction of self‐supported Sb prisms with stable sodium storage. Adv. Energy Mater. 2019, 9, 1901096.

155

Xu, A. D.; Xia, Q.; Zhang, S. K.; Duan, H. H.; Yan, Y. R.; Wu, S. P. Ultrahigh rate performance of hollow antimony nanoparticles impregnated in open carbon boxes for sodium‐ion battery under elevated temperature. Small 2019, 15, 1903521.

156

Li, K. F.; Su, D. W.; Liu, H.; Wang, G. X. Antimony-carbon-graphene fibrous composite as freestanding anode materials for sodium ion batteries. Electrochim. Acta 2015, 177, 304–309.

157

Liao, S.; Yang, G. Z.; Wang, C. X. Ultrafine Sb nanoparticles embedded in an amorphous carbon matrix for high-performance sodium ion anode materials. RSC Adv. 2016, 6, 114790–114799.

158

Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Sb–C nanofibers with long cycle life as an anode material for high-performance sodium ion batteries. Energy Environ. Sci. 2014, 7, 323–328.

159

Zhou, X. S.; Dai, Z. H.; Bao, J. C.; Guo, Y. G. Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage. J. Mater. Chem. A 2013, 1, 13727–13731.

160

Schulze, M. C.; Belson, R. M.; Kraynak, L. A.; Prieto, A. L. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries. Energy Stor. Mater. 2020, 25, 572–584.

161

Qian, J. F.; Chen, Y.; Wu, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48, 7070– 7072.

162

Nita, C.; Fullenwarth, J.; Monconduit, L.; Vidal, L.; Ghimbeu, C. M. Influence of carbon characteristics on Sb/Carbon nanocomposites formation and performances in Na-ion batteries. Mater. Today Energy 2019, 13, 221–232.

163

Meng, W. J.; Guo, M. Q.; Liu, X.; Chen, J. J.; Bai, Z. C.; Wang, Z. H. Spherical nano Sb@HCMs as high-rate and superior cycle performance anode material for sodium ion batteries. J. Alloys Compd. 2019, 795, 141–150.

164

Park, J. S.; Kang, Y. C. Uniquely structured Sb nanoparticle-embedded carbon/reduced graphene oxide composite shell with empty voids for high performance sodium ion storage. Chem. Eng. J. 2019, 373, 227–237.

165

Xu, X.; Si, L.; Zhou, X. S.; Tu, F. Z.; Zhu, X. S.; Bao, J. C. Chemical bonding between antimony and ionic liquid-derived nitrogen-doped carbon for sodium ion battery anode. J. Power Sources 2017, 349, 37–44.

166

Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk–shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017, 17, 2034–2042.

167

Chen, B. C.; Qin, H. Y.; Li, K.; Zhang, B.; Liu, E. Z.; Zhao, N. Q.; Shi, C. S.; He, C. N. Yolk-shelled Sb@C nanoconfined nitrogen/sulfur co-doped 3D porous carbon microspheres for sodium ion battery anode with ultralong high-rate cycling. Nano Energy 2019, 66, 104133.

168

Li, X. Y.; Qu, J. K.; Xie, H. W.; Song, Q. S.; Fu, G. F.; Yin, H. Y. An electro-deoxidation approach to co-converting antimony oxide/graphene oxide to antimony/graphene composite for sodium ion battery anode. Electrochim. Acta 2020, 332, 135501.

169

Li, P. H.; Yu, L. T.; Ji, S. M.; Xu, X. J.; Liu, Z. B.; Liu, J. W.; Liu, J. Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. Chem. Eng. J. 2019, 374, 502–510.

170

Dong, S. H.; Li, C. X.; Li, Z. Q.; Ge, X. L.; Miao, X. G.; Wang, P.; Zhang, Z. W.; Yin, L. W. Synergistic effect of porous phosphosulfide and antimony nanospheres anchored on 3D carbon foam for enhanced long-life sodium storage performance. Energy Stor. Mater. 2019, 20, 446–454.

171

Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High‐performance sodium ion batteries based on a 3D anode from nitrogen‐doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.

172

Li, W.; Zhou, M.; Li, H. M.; Wang, K. L.; Cheng, S. J.; Jiang, K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 2015, 8, 2916–2921.

173

Wang, P. Z.; Qiao, B.; Du, Y. C.; Li, Y. F.; Zhou, X. S.; Dai, Z. H.; Bao, J. C. Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium ion batteries. J. Phys. Chem. C 2015, 119, 21336–21344.

174

Song, J. X.; Yu, Z. X.; Gordin, M. L.; Li, X. L.; Peng, H. S.; Wang, D. H. Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 2015, 9, 11933–11941.

175

Cui, C. Y.; Xu, J. T.; Zhang, Y. Q.; Wei, Z. X.; Mao, M. L.; Lian, X.; Wang, S. Y.; Yang, C. Y.; Fan, X. L.; Ma, J. M. et al. Antimony nanorod encapsulated in cross-linked carbon for high-performance sodium ion battery anodes. Nano Lett. 2019, 19, 538–544.

176

Ning, X. M.; Zhou, X. S.; Luo, J.; Ma, L.; Zhan, L. Ion-assisted construction of Sb/N-doped graphene as an anode for Li/Na ion batteries. Nanotechnology 2020, 31, 095404.

177

Wu, P.; Zhang, A. P.; Peng, L. L.; Zhao, F.; Tang, Y. W.; Zhou, Y. M.; Yu, G. H. Cyanogel-enabled homogeneous Sb–Ni–C ternary framework electrodes for enhanced sodium storage. ACS Nano 2018, 12, 759–767.

178

Gao, H.; Niu, J. Z.; Zhang, C.; Peng, Z. Q.; Zhang, Z. H. A dealloying synthetic strategy for nanoporous bismuth–antimony anodes for sodium ion batteries. ACS Nano 2018, 12, 3568–3577.

179

Guo, S. T.; Li, H.; Lu, Y.; Liu, Z. F.; Hu, X. L. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi–Sb alloy/carbon nanofibers. Energy Stor. Mater. 2020, 27, 270–278.

180

Jackson, E. D.; Green, S.; Prieto, A. L. Electrochemical performance of electrodeposited Zn4Sb3 films for sodium ion secondary battery anodes. ACS Appl. Mater. Interfaces 2015, 7, 7447–7450.

181

Hong, K. S.; Nam, D. H.; Lim, S. J.; Sohn, D.; Kim, T. H.; Kwon, H. Electrochemically synthesized Sb/Sb2O3 composites as high-capacity anode materials utilizing a reversible conversion reaction for Na-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 17264–17271.

182

Tan, Y. M.; Chen, L. J.; Chen, H.; Hou, Q. L.; Chen, X. H. Synthesis of a symmetric bundle-shaped Sb2O3 and its application for anode materials in lithium ion batteries. Mater. Lett. 2018, 212, 103–106.

183

Li, K. F.; Liu, H.; Wang, G. X. Sb2O3 nanowires as anode material for sodium ion battery. Arab. J. Sci. Eng. 2014, 39, 6589–6593.

184

Hu, M. J.; Jiang, Y. Z.; Sun, W. P.; Wang, H. T.; Jin, C. H.; Yan, M. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 19449–19455.

185

Nam, D. H.; Hong, K. S.; Lim, S. J.; Kim, M. J.; Kwon, H. S. High‐ performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na‐ion batteries. Small 2015, 11, 2885–2892.

186

Pan, J.; Wang, N.; Zhou, Y. L.; Yang, X. F.; Zhou, W. Y.; Qian, Y. T.; Yang, J. Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. Nano Res. 2017, 10, 1794–1803.

187

Guo, X.; Xie, X. Q.; Choi, S.; Zhao, Y. F.; Liu, H.; Wang, C. Y.; Chang, S.; Wang, G. X. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium ion batteries. J. Mater. Chem. A 2017, 5, 12445–12452.

188

Deng, M. X.; Li, S. J.; Hong, W. W.; Jiang, Y. L.; Xu, W.; Shuai, H. L.; Zou, G. Q.; Hu, Y. C.; Hou, H. S.; Wang, W. L. et al. Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater. Chem. Phys. 2019, 223, 46–52.

189

Ye, J. J.; Xia, G.; Zheng, Z. Q.; Hu, C. Facile controlled synthesis of coral-like nanostructured Sb2O3@Sb anode materials for high performance sodium ion batteries. Int. J. Hydrogen Energy 2020, 45, 9969–9978.

190

Liu, Q.; Chen, Z. Z.; Qin, R.; Xu, C. X.; Hou, J. G. Hierarchical mulberry-like Fe3S4/Co9S8 nanoparticles as highly reversible anode for lithium-ion batteries. Electrochim. Acta 2019, 304, 405–414.

191

Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

192

Kim, S.; Qu, S. B.; Zhang, R. Y.; Braun, P. V. High volumetric and gravimetric capacity electrodeposited mesostructured Sb2O3 sodium ion battery anodes. Small 2019, 15, 1900258.

193

Shi, L.; Wang, W. H. Submicron‐sized Sb2O3 with hierarchical structure as high‐performance anodes for Na‐ion storage. Int. J. Energy Res. 2019, 43, 6561–6565.

194

Zhai, H. L.; Jiang, H. F.; Qian, Y.; Cai, X. Y.; Liu, H. M.; Qiu, Y. T.; Jin, M. M.; Xiu, F.; Liu, X.; Lai, L. F. Sb2S3 nanocrystals embedded in multichannel N-doped carbon nanofiber for ultralong cycle life sodium ion batteries. Mater. Chem. Phys. 2020, 240, 122139.

195

Dong, Y. C.; Hu, M. J.; Zhang, Z. Y.; Zapien, J. A.; Wang, X.; Lee, J. M.; Zhang, W. J. Nitrogen-doped carbon-encapsulated antimony sulfide nanowires enable high rate capability and cyclic stability for sodium ion batteries. ACS Appl. Nano Mater. 2019, 2, 1457– 1465.

196

Dong, Y. C.; Yang, S. L.; Zhang, Z. Y.; Lee, J. M.; Zapien, J. A. Enhanced electrochemical performance of lithium ion batteries using Sb2S3 nanorods wrapped in graphene nanosheets as anode materials. Nanoscale 2018, 10, 3159–3165.

197

Zhang, H. J.; Ge, M.; Yang, L. T.; Zhou, Z.; Chen, W.; Li, Q. Z.; Liu, L. Synthesis and catalytic properties of Sb2S3 nanowire bundles as counter electrodes for dye-sensitized solar cells. J. Phys. Chem. C 2013, 117, 10285–10290.

198

Yang, Q. Q.; Zhou, J.; Zhang, G. Q.; Guo, C.; Li, M.; Zhu, Y. C.; Qian, Y. T. Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries. J. Mater. Chem. A 2017, 5, 12144–12148.

199

Yao, S. S.; Cui, J.; Lu, Z. H.; Xu, Z. L.; Qin, L.; Huang, J. Q.; Sadighi, Z.; Ciucci, F.; Kim, J. K. Unveiling the unique phase transformation behavior and sodiation kinetics of 1D van der Waals Sb2S3 anodes for sodium ion batteries. Adv. Energy Mater. 2017, 7, 1602149.

200

Xiong, X. H.; Wang, G. H.; Lin, Y. W.; Wang, Y.; Ou, X.; Zheng, F. H.; Yang, C. H.; Wang, J. H.; Liu, M. L. Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 2016, 10, 10953–10959.

201

Zhao, Y. B.; Manthiram, A. Amorphous Sb2S3 embedded in graphite: A high-rate, long-life anode material for sodium ion batteries. Chem. Commun. 2015, 51, 13205–13208.

202

Hou, H. S.; Jing, M. J.; Huang, Z. D.; Yang, Y. C.; Zhang, Y.; Chen, J.; Wu, Z. B.; Ji, X. B. One-dimensional rod-like Sb2S3-based anode for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 19362–19369.

203

Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium ion batteries. Nat. Commun. 2013, 4, 2922.

204

Li, J. B.; Yan, D.; Zhang, X. J.; Hou, S. J.; Li, D. S.; Lu, T.; Yao, Y. F.; Pan, L. K. In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium ion batteries. Electrochim. Acta 2017, 228, 436–446.

205

Wu, F. M.; Guo, X. M.; Li, M.; Xu, H. One-step hydrothermal synthesis of Sb2S3/reduced graphene oxide nanocomposites for high-performance sodium ion batteries anode materials. Ceram. Int. 2017, 43, 6019–6023.

206

Mullaivananathan, V.; Kalaiselvi, N. Sb2S3 added bio-carbon: Demonstration of potential anode in lithium and sodium ion batteries. Carbon 2019, 144, 772–780.

207

Xie, F. X.; Zhang, L.; Gu, Q. F.; Chao, D. L.; Jaroniec, M.; Qiao, S. Z. Multi-shell hollow structured Sb2S3 for sodium ion batteries with enhanced energy density. Nano Energy 2019, 60, 591–599.

208

Wu, C.; Jiang, Y.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Peapod‐like carbon‐encapsulated cobalt chalcogenide nanowires as cycle‐stable and high‐rate materials for sodium‐ion anodes. Adv. Mater. 2016, 28, 7276–7283.

209

Zhao, W. X.; Li, C. M. Mesh-structured N-doped graphene@Sb2Se3 hybrids as an anode for large capacity sodium ion batteries. J. Colloid Interface Sci. 2017, 488, 356–364.

210

Ou, X.; Yang, C. H.; Xiong, X. H.; Zheng, F. H.; Pan, Q. C.; Jin, C.; Liu, M. L.; Huang, K. A new rGO‐overcoated Sb2Se3 nanorods anode for Na+ battery: In situ X‐ray diffraction study on a live sodiation/desodiation process. Adv. Funct. Mater. 2017, 27, 1606242.

211

Ge, P.; Cao, X. Y.; Hou, H. S.; Li, S. J.; Ji, X. B. Rodlike Sb2Se3 wrapped with carbon: The exploring of electrochemical properties in sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 34979–34989.

212

Nam, K. H.; Park, C. M. 2D layered Sb2Se3-based amorphous composite for high-performance Li- and Na-ion battery anodes. J. Power Sources 2019, 433, 126639.

213

Fang, Y. J.; Yu, X. Y.; Lou, X. W. Formation of polypyrrole‐coated Sb2Se3 microclips with enhanced sodium‐storage properties. Angew. Chem. 2018, 130, 10007–10011.

214

Guo, L.; Cao, L. Y.; Huang, J. F.; Li, J. Y.; Chen, S. Y. Carbon capsule confined Sb2Se3 for fast Na+ extraction in sodium ion batteries. Sustain. Energy Fuels 2020, 4, 797–808.

215

Man, Q. R.; Hou, Q. D.; Liu, P. F.; Jin, R. C.; Li, G. H. Cube-like Sb2Se3/C constructed by ultrathin nanosheets as anode material for lithium and sodium ion batteries. Ionics 2019, 25, 1551–1558.

216

Chen, Z.; Wu, J.; Liu, X.; Xu, G. B.; Yang, L. W. Ultrathin carbon-coated Sb2Se3 nanorods embedded in 3D hierarchical carbon matrix as binder-free anode for high-performance sodium ion batteries. Ionics 2019, 25, 3737–3747.

217

Dordevic, S. V.; Wolf, M. S.; Stojilovic, N.; Lei, H.; Petrovic, C. Signatures of charge inhomogeneities in the infrared spectra of topological insulators Bi2Se3, Bi2Te3 and Sb2Te3. J. Phys. : Condens. Matter 2013, 25, 075501.

218

Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

219

Vieira, E. M. F.; Figueira, J.; Pires, A. L.; Grilo, J.; Silva, M. F.; Pereira, A. M.; Goncalves, L. M. Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors. J. Alloys Compd. 2019, 774, 1102–1116.

220

Grishanov, D. A.; Mikhaylov, A. A.; Medvedev, A. G.; Gun, J.; Nagasubramanian, A.; Madhavi, S.; Lev, O.; Prikhodchenko, P. V. Synthesis of high volumetric capacity graphene oxide-supported tellurantimony Na- and Li-ion battery anodes by hydrogen peroxide sol gel processing. J. Colloid Interface Sci. 2018, 512, 165–171.

221

Yu, X. X.; Wang, L.; Yin, H. Hierarchical heterojunction structures based-on layered Sb2Te3 nanoplate@rGO for extended long-term life and high-rate capability of sodium batteries. Appl. Mater. Today 2019, 15, 582–589.

222

Yang, Z.; Sun, J. Y.; Ni, Y. Z.; Zhao, Z. H.; Bao, J. M.; Chen, S. Facile synthesis and in situ transmission electron microscopy investigation of a highly stable Sb2Te3/C nanocomposite for sodium ion batteries. Energy Stor. Mater. 2017, 9, 214–220.

223

Ihsan-Ul-Haq, M.; Huang, H.; Wu, J. X.; Cui, J.; Yao, S. S.; Chong, W. G.; Huang, B. L.; Kim, J. K. Thin solid electrolyte interface on chemically bonded Sb2Te3/CNT composite anodes for high performance sodium ion full cells. Nano Energy 2020, 71, 104613.

224

Yin, H.; Shen, W. Q.; Qu, H. Q.; Li, C.; Zhu, M. Q. Boosted charge transfer and Na-ion diffusion in cooling-fins-like Sb2Te3–Te nano-heterostructure for long cycle life and high rate capability anode. Nano Energy 2020, 70, 104468.

225

Yang, H. H.; Wang, P.; Zhang, J. J.; Zhang, L.; Yan, J. H. Microwave hydrothermal synthesis of SbVO4 nanospheres as anode materials for sodium ion batteries. Ionics 2020, 26, 1267–1273.

226

Pan, J.; Zhang, Y. C.; Li, L. L.; Cheng, Z. J.; Li, Y. L.; Yang, X. F.; Yang, J.; Qian, Y. T. Polyanions enhance conversion reactions for lithium/sodium‐ion batteries: The case of SbVO4 nanoparticles on reduced graphene oxide. Small Methods 2019, 3, 1900231.

227

Wang, P.; Xie, S. M.; She, Y. Y.; Fan, W. G.; Leung, M. K. H.; Wang, H. K. Microwave‐hydrothermal synthesis of hierarchical Sb2WO6 nanostructures as a new anode material for sodium storage. ChemistrySelect 2019, 4, 1078–1083.

228

Ma, M. Y.; Lu, Y.; Yan, Z. H.; Chen, J. In situ synthesis of a bismuth layer on a sodium metal anode for fast interfacial transport in sodium‐oxygen batteries. Batteries Supercaps 2019, 2, 663–667.

229

Yuan, Y.; Wang, C. C.; Lei, K. X.; Li, H. X.; Li, F. J.; Chen, J. Sodium-ion hybrid capacitor of high power and energy density. ACS Cent. Sci. 2018, 4, 1261–1265.

230

Cheng, L.; Liu, H. J.; Tan, X. J.; Zhang, J.; Wei, J.; Lv, H. Y.; Shi, J.; Tang, X. F. Thermoelectric properties of a monolayer bismuth. J. Phys. Chem. C 2014, 118, 904–910.

231

Sun, J. G.; Li, M. C.; Oh, J. A. S.; Zeng, K. Y.; Lu, L. Recent advances of bismuth based anode materials for sodium ion batteries. Mater. Technol. 2018, 33, 563–573.

232

Wang, C. C.; Wang, L. B.; Li, F. J.; Cheng, F. Y.; Chen, J. Bulk bismuth as a high‐capacity and ultralong cycle‐life anode for sodium‐ion batteries by coupling with glyme‐based electrolytes. Adv. Mater. 2017, 29, 1702212.

233

Sottmann, J.; Herrmann, M.; Vajeeston, P.; Hu, Y.; Ruud, A.; Drathen, C.; Emerich, H.; Fjellvaåg, H.; Wragg, D. S. How crystallite size controls the reaction path in nonaqueous metal ion batteries: The example of sodium bismuth alloying. Chem. Mater. 2016, 28, 2750–2756.

234

Huang, Y. X.; Zhu, C. Y.; Zhang, S. L.; Hu, X. M.; Zhang, K.; Zhou, W. H.; Guo, S. Y.; Xu, F.; Zeng, H. B. Ultrathin bismuth nanosheets for stable Na-ion batteries: Clarification of structure and phase transition by in situ observation. Nano Lett. 2019, 19, 1118–1123.

235

Su, D. W.; Dou, S. X.; Wang, G. X. Bismuth: A new anode for the Na-ion battery. Nano Energy 2015, 12, 88–95.

236

Kim, Y.; Kim, Y.; Park, Y.; Jo, Y. N.; Kim, Y. J.; Choi, N. S.; Lee, K. T. SnSe alloy as a promising anode material for Na-ion batteries. Chem. Commun. 2015, 51, 50–53.

237

Zhao, Y. B.; Manthiram, A. High-capacity, high-rate Bi–Sb alloy anodes for lithium-ion and sodium ion batteries. Chem. Mater. 2015, 27, 3096–3101.

238

Zhou, J.; Chen, J. C.; Chen, M. X.; Wang, J.; Liu, X. Z.; Wei, B.; Wang, Z. C.; Li, J. J.; Gu, L.; Zhang, Q. H. et al. Few‐layer bismuthene with anisotropic expansion for high‐areal‐capacity sodium ion batteries. Adv. Mater. 2019, 31, 1807874.

239

Liu, S. N.; Luo, Z. G.; Guo, J. H.; Pan, A. Q.; Cai, Z. Y.; Liang, S. Q. Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium ion batteries. Electrochem. Commun. 2017, 81, 10–13.

240

Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H. Advanced arrayed bismuth nanorod bundle anode for sodium ion batteries. J. Mater. Chem. A 2016, 4, 10098–10104.

241

Yang, F. H.; Yu, F.; Zhang, Z. A.; Zhang, K.; Lai, Y. Q.; Li, J. Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium‐ion batteries. Chem. —Eur. J. 2016, 22, 2333–2338.

242

Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore– shell Bi@N‐doped carbon nanospheres for high power density and long cycle life sodium‐ and potassium‐ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.

243

Xiong, P. X.; Bai, P. X.; Li, A.; Li, B. F.; Cheng, M. R.; Chen, Y. P.; Huang, S. P.; Jiang, Q.; Bu, X. H.; Xu, Y. H. Bismuth nanoparticle@ carbon composite anodes for ultralong cycle life and high‐rate sodium‐ion batteries. Adv. Mater. 2019, 31, 1904771.

244

Chen, J.; Fan, X. L.; Ji, X.; Gao, T.; Hou, S.; Zhou, X. Q.; Wang, L. N.; Wang, F.; Yang, C. Y.; Chen, L. et al. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium ion batteries. Energy Environ. Sci. 2018, 11, 1218–1225.

245

Cheng, X. L.; Li, D. J.; Wu, Y.; Xu, R.; Yu, Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4913–4921.

246

Jin, Y. Q.; Yuan, H. C.; Lan, J. L.; Yu, Y. H.; Lin, Y. H.; Yang, X. P. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: The case of 3D freestanding and binder-free bismuth/CNF anodes. Nanoscale 2017, 9, 13298–13304.

247

Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium ion batteries. Nano Res. 2017, 10, 2156–2167.

248

Xue, P.; Wang, N. N.; Fang, Z. W.; Lu, Z. X.; Xu, X.; Wang, L.; Du, Y.; Ren, X. C.; Bai, Z. C.; Dou, S. X. et al. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium ion batteries. Nano Lett. 2019, 19, 1998–2004.

249

Wang, L. B.; Voskanyan, A. A.; Chan, K. Y.; Qin, B.; Li, F. J. Combustion synthesized porous bismuth/N-doped carbon nanocomposite for reversible sodiation in a sodium ion battery. ACS Appl. Energy Mater. 2020, 3, 565–572.

250

Zhang, Y. F.; Su, Q.; Xu, W. J.; Cao, G. Z.; Wang, Y. P.; Pan, A. Q.; Liang, S. Q. A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder‐free anodes for sodium‐ion batteries. Adv. Sci. 2019, 6, 1900162.

251

Hwang, J.; Park, J. H.; Chung, K. Y.; Kim, J. One-pot synthesis of Bi-reduced graphene oxide composite using supercritical acetone as anode for Na-ion batteries. Chem. Eng. J. 2020, 387, 124111.

252

Wang, C. C.; Du, D. F.; Song, M. M.; Wang, Y. H.; Li, F. J. A high-power Na3V2(PO4)3-Bi sodium ion full battery in a wide temperature range. Adv. Energy Mater. 2019, 9, 1900022.

253

Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high‐energy‐density potassium‐ion batteries. Angew. Chem. 2018, 130, 4777–4781.

254

Fan, H. M.; Li, H. Y.; Liu, B. K.; Lu, Y. C.; Xie, T. F.; Wang, D. J. Photoinduced charge transfer properties and photocatalytic activity in Bi2O3/BaTiO3 composite photocatalyst. ACS Appl. Mater. Interfaces 2012, 4, 4853–4857.

255

Adhikari, S. P.; Dean, H.; Hood, Z. D.; Peng, R.; More, K. L.; Ivanov, I.; Wu, Z. L.; Lachgar, A. Visible-light-driven Bi2O3/WO3 composites with enhanced photocatalytic activity. RSC Adv. 2015, 5, 91094–91102.

256

Kim, M. K.; Yu, S. H.; Jin, A. H.; Kim, J.; Ko, I. H.; Lee, K. S.; Mun, J.; Sung, Y. E. Bismuth oxide as a high capacity anode material for sodium ion batteries. Chem. Commun. 2016, 52, 11775–11778.

257

Zhang, J. Y.; Dang, W. Q.; Yan, X. C.; Li, M.; Gao, H.; Ao, Z. M. Doping indium in β-Bi2O3 to tune the electronic structure and improve the photocatalytic activities: First-principles calculations and experimental investigation. Phys. Chem. Chem. Phys. 2014, 16, 23476–23482.

258

Mei, J.; Liao, T.; Ayoko, G. A.; Sun, Z. Q. Two-dimensional bismuth oxide heterostructured nanosheets for lithium- and sodium ion storages. ACS Appl. Mater. Interfaces 2019, 11, 28205–28212.

259

Fang, W.; Fan, L. S.; Zhang, Y.; Zhang, Q.; Yin, Y. Y.; Zhang, N. Q.; Sun, K. N. Synthesis of carbon coated Bi2O3 nanocomposite anode for sodium ion batteries. Ceram. Int. 2017, 43, 8819–8823.

260

Nithya, C. Bi2O3@reduced graphene oxide nanocomposite: An anode material for sodium ion storage. ChemPlusChem 2015, 80, 1000–1006.

261

Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium ion batteries. Mater. Chem. Front. 2017, 1, 1615–1621.

262

Demir, E.; Soytas, S. H.; Demir-Cakan, R. Bismuth oxide nanoparticles embedded carbon nanofibers as self-standing anode material for Na-ion batteries. Solid State Ionics 2019, 342, 115066.

263

Zuo, W. H.; Zhu, W. H.; Zhao, D. F.; Sun, Y. F.; Li, Y. Y.; Liu, J. P.; Lou, X. W. Bismuth oxide: A versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci. 2016, 9, 2881–2891.

264

Lu, C.; Li, Z. Z.; Yu, L. H.; Zhang, L.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium ion batteries. Nano Res. 2018, 11, 4614–4626.

265

Wu, T.; Zhou, X. G.; Zhang, H.; Zhong, X. H. Bi2S3 nanostructures: A new photocatalyst. Nano Res. 2010, 3, 379–386.

266

Biswas, K.; Zhao, L. D.; Kanatzidis, M. G. Tellurium-free thermoelectric: The anisotropic n-type semiconductor Bi2S3. Adv. Energy Mater. 2012, 2, 634–638.

267

Luo, W.; Li, F.; Li, Q. D.; Wang, X. P.; Yang, W.; Zhou, L.; Mai, L. Q. Heterostructured Bi2S3–Bi2O3 nanosheets with a built-in electric field for improved sodium storage. ACS Appl. Mater. Interfaces 2018, 10, 7201–7207.

268

Xu, B. L.; Qi, S. H.; He, P. B.; Ma, J. M. Antimony‐ and bismuth‐ based chalcogenides for sodium‐ion batteries. Chem. Asian J. 2019, 14, 2925–2937.

269

Li, S.; Gao, C.; Hua, D.; Wang, G.; Guo, S. H.; Qiu, J. X.; Su, X. T. Bi2S3 nanorods bonding on reduced graphene oxide surface as advanced anode materials for sodium‐ion batteries. Energy Technol. 2019, 7, 1800876.

270

Chai, W. W.; Yin, W. H.; Wang, K.; Ye, W. K.; Li, X. C.; Tang, B.; Rui, Y. C. Bismuth sulfide–integrated carbon derived from organic ligands as a superior anode for sodium storage. Energy Technol. 2019, 7, 1900668.

271

Zhang, Y.; Fan, L. S.; Wang, P. X.; Yin, Y. Y.; Zhang, X. Y.; Zhang, N. Q.; Sun, K. N. Coupled flower-like Bi2S3 and graphene aerogels for superior sodium storage performance. Nanoscale 2017, 9, 17694–17698.

272

Yang, W. L.; Wang, H.; Liu, T. T.; Gao, L. J. A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries. Mater. Lett. 2016, 167, 102–105.

273

Klavetter, K. C.; de Souza, J. P.; Heller, A.; Mullins, C. B. High tap density microparticles of selenium-doped germanium as a high efficiency, stable cycling lithium-ion battery anode material. J. Mater. Chem. A 2015, 3, 5829–5834.

274

Xin, S.; Yu, L.; You, Y.; Cong, H. P.; Yin, Y. X.; Du, X. L.; Guo, Y. G.; Yu, S. H.; Cui, Y.; Goodenough, J. B. The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon. Nano Lett. 2016, 16, 4560–4568.

275

Chen, X. J.; Hong, Y.; Ge, X. L.; Li, C. X.; Miao, X. G.; Wang, P.; Zhang, Z. W.; Yin, L. W. Se-doped Bi2S3 nanoneedles grown on the three-dimensional carbon foam as a self-supported anode for high-performance sodium ion batteries. J. Alloys Compd. 2020, 825, 153901.

276

Dai, S. R.; Wang, L. C.; Shen, Y.; Wang, M. K. Bismuth selenide nanocrystalline array electrodes for high-performance sodium ion batteries. Appl. Mater. Today 2020, 18, 100455.

277

Kharade, S. D.; Pawar, N. B.; Ghanwat, V. B.; Mali, S. S.; Bae, W. R.; Patil, P. S.; Hong, C. K.; Kim, J. H.; Bhosale, P. N. Room temperature deposition of nanostructured Bi2Se3 thin films for photoelectrochemical application: Effect of chelating agents. New J. Chem. 2013, 37, 2821–2828.

278

Das, B.; Das, N. S.; Sarkar, S.; Chatterjee, B. K.; Chattopadhyay, K. K. Topological insulator Bi2Se3/Si-nanowire-based p–n junction diode for high-performance near-infrared photodetector. ACS Appl. Mater. Interfaces 2017, 9, 22788–22798.

279

Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant‐free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1425–1429.

280

Das, B.; Sarkar, S.; Khan, R.; Santra, S.; Das, N. S.; Chattopadhyay, K. K. rGO-wrapped flowerlike Bi2Se3 nanocomposite: Synthesis, experimental and simulation-based investigation on cold cathode applications. RSC Adv. 2016, 6, 25900–25912.

281

Xie, L. X.; Yang, Z.; Sun, J. Y.; Zhou, H. Q.; Chi, X. W.; Chen, H. L.; Li, A. X.; Yao, Y., Chen, S. Bi2Se3/C nanocomposite as a new sodium ion battery anode material. Nano-Micro Lett. 2018, 10, 50.

282

Li, D.; Zhou, J. S.; Chen, X. H.; Song, H. H. Graphene-loaded Bi2Se3: A conversion–alloying-type anode material for ultrafast gravimetric and volumetric Na storage. ACS Appl. Mater. Interfaces 2018, 10, 30379–30387.

283

Sun, D. D.; Zhang, G. J.; Li, D.; Liu, S. T.; Jia, X. L.; Zhou, J. S. A layered Bi2Te3 nanoplates/graphene composite with high gravimetric and volumetric performance for Na-ion storage. Sustain. Energy Fuels 2019, 3, 3163–3171.

284

Wu, S. J.; Xiong, J. W.; Sun, J. G.; Hood, Z. D.; Zeng, W.; Yang, Z. Z.; Gu, L.; Zhang, X. X.; Yang, S. Z. Hydroxyl-dependent evolution of oxygen vacancies enables the regeneration of BiOCl photocatalyst. ACS Appl. Mater. Interfaces 2017, 9, 16620–16626.

285

Jiang, Y.; Sun, J. G.; Wu, S. J. BiOCl nanosheets with controlled exposed facets and improved photocatalytic activity. Catal. Lett. 2017, 147, 2006–2012.

286

Zhang, Y.; Lu, S. Y.; Wang, M. Q.; Niu, Y. B.; Liu, S. G.; Li, Y. T.; Wu, X. S.; Bao, S. J.; Xu, M. W. Bismuth oxychloride ultrathin nanoplates as an anode material for sodium ion batteries. Mater. Lett. 2016, 178, 44–47.

287

Chen, F. M.; Huang, Y. X.; Guo, L.; Sun, L. F.; Wang, Y.; Yang, H. Y. Dual-ions electrochemical deionization: A desalination generator. Energy Environ. Sci. 2017, 10, 2081–2089.

288

Sun, J. G.; Tu, W. Q.; Chen, C.; Plewa, A.; Ye, H. L.; Oh, J. A. S.; He, L. C.; Wu, T.; Zeng, K. Y.; Lu, L. Chemical bonding construction of reduced graphene oxide-anchored few-layer bismuth oxychloride for synergistically improving sodium ion storage. Chem. Mater. 2019, 31, 7311–7319.

289

Muruganantham, R.; Liu, W. R. A venture synthesis and fabrication of BiVO4 as a highly stable anode material for Na‐ion batteries. ChemistrySelect 2017, 2, 8187–8195.

290

Xu, X. S.; Xu, Y. X.; Xu, F.; Jiang, G. S.; Jian, J.; Yu, H. W.; Zhang, E. M.; Shchukin, D.; Kaskel, S.; Wang, H. Q. Black BiVO4: Size tailored synthesis, rich oxygen vacancies, and sodium storage performance. J. Mater. Chem. A 2020, 8, 1636–1645.

291

Durai, L.; Moorthy, B.; Thomas, C. I.; Kim, D. K.; Bharathi, K. K. Electrochemical properties of BiFeO3 nanoparticles: Anode material for sodium ion battery application. Mater. Sci. Semicond. Process. 2017, 68, 165–171.

292

Shadike, Z.; Zhao, E. Y.; Zhou, Y. N.; Yu, X. Q.; Yang, Y.; Hu, E. Y.; Bak, S.; Gu, L.; Yang, X. Q. Advanced characterization techniques for sodium‐ion battery studies. Adv. Energy Mater. 2018, 8, 1702588.

293

Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Jiang, L. W.; Rong, X. H.; Hu, Y. S.; Li, H.; Chen, L. Q. Novel methods for sodium‐ion battery materials. Small Methods 2017, 1, 1600063.

294

Rehr, J. J.; Ankudinov, A. L. Progress in the theory and interpretation of XANES. Coord. Chem. Rev. 2005, 249, 131–140.

295

Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

296

Xia, Z. M.; Zhang, H.; Shen, K. C.; Qu, Y. Q.; Jiang, Z. Wavelet analysis of extended X-ray absorption fine structure data: Theory, application. Phys. B Condens. Matter 2018, 542, 12–19.

297

Bai, Q.; Yang, L. F.; Chen, H. L.; Mo, Y. F. Computational studies of electrode materials in sodium‐ion batteries. Adv. Energy Mater. 2018, 8, 1702998.

298

Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface‐stabilization mechanism in aprotic solvent. ChemElectroChem 2014, 1, 580–589.

299

Ellis, L. D.; Wilkes, B. N.; Hatchard, T. D.; Obrovac, M. N. In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells. J. Electrochem. Soc. 2014, 161, A416– A421.

300

Mortazavi, M.; Deng, J. K.; Shenoy, V. B.; Medhekar, N. V. Elastic softening of alloy negative electrodes for Na-ion batteries. J. Power Sources 2013, 225, 207–214.

301

Dou, X. W.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L. M.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard carbons for sodium ion batteries: Structure, analysis, sustainability, and electrochemistry. Mater. Today 2019, 23, 87–104.

302

Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Shin, J.; Hu, Z.; Chou, S. L.; Chen, J.; Kang, Y. M. Cobalt‐doped FeS2 nanospheres with complete solid solubility as a high‐performance anode material for sodium‐ion batteries. Angew. Chem., Int. Ed. 2016, 55, 12822–12826.

303

Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Li, W. J.; Kang, Y. M.; Chen, J. Urchin‐like CoSe2 as a high‐performance anode material for sodium‐ion batteries. Adv. Funct. Mater. 2016, 26, 6728–6735.

304
Shim, J.; Striebel, K. A. Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries. J. Power Sources 2003, 119121, 934–937.https://doi.org/10.1016/S0378-7753(03)00235-0
305

Zheng, H. H.; Li, J.; Song, X. Y.; Liu, G.; Battaglia, V. S. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes. Electrochim. Acta 2012, 71, 258–265.

Nano Research
Pages 3690-3723
Cite this article:
Sarkar S, Roy S, Zhao Y, et al. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Research, 2021, 14(11): 3690-3723. https://doi.org/10.1007/s12274-021-3334-y
Topics:

968

Views

38

Crossref

38

Web of Science

39

Scopus

0

CSCD

Altmetrics

Received: 18 November 2020
Revised: 27 December 2020
Accepted: 13 January 2021
Published: 24 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return