AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts

Jiayi Chen1,§Tingting Wang1,§Zhongjian Li1Bin Yang1,2Qinghua Zhang1Lecheng Lei1,2Pingyun Feng3( )Yang Hou1,2( )
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Institute of Zhejiang University - Quzhou, Quzhou 324000, China
Department of Chemistry, University of California, Riverside, California 92521, USA

§ Jiayi Chen and Tingting Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Electroreduction of carbon dioxide (CO2ER) into value-added chemical compounds has presented as a promising route for renewable carbon cycle, which alleviates global warming concern. Compared with traditional C1 products, high-value multicarbon products converted from atmospheric CO2 via CO2ER have attracted dramatic interest due to their significant economic efficiency, however desired catalytic selectivity of multicarbon products is difficult to achieve because of the high thermodynamic barriers and complex reaction pathways. To replace currently used precious-metal based catalysts, developing highly efficient and precious-metal-free CO2ER catalysts based on earth abundant elements is the top priority to meet the requirements of industrialization. Although certain progress has been made, there are still few systematic reports on the non-precious metal heterogeneous (NPMH) CO2ER electrocatalysts for efficient conversion of CO2 to multicarbon products. Herein, we summarize the latest research advances in recent developments of NPMH electrocatalysts, including nanostructured Cu, Cu-based bimetallic catalysts, Cu-based complexes, and carbon-based Cu-free catalysts for electroreduction of CO2 into high-value multicarbon products. The corresponding CO2ER performances are discussed in the order of the types of multicarbon products, specifically for ethanol (C2H5OH), ethylene (C2H4), ethane (C2H6), acetic acid (CH3COOH), propanol (C3H7OH), and other C2+ products with a special attention paid to understand the structure-activity relationship. Moreover, key strategies and characterization techniques for catalytic mechanism insights, and unsolved issues and future trends for enhancing the CO2ER performance of NPMH electrocatalysts are highlighted, which provides a constructive guidance on the development of CO2ER electrocatalysts with high activity and selectivity for multicarbon products.

References

[1]
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16-22.
[2]
Obama, B. The irreversible momentum of clean energy. Science 2017, 355, 126-129.
[3]
Sun, X. F.; Zhu, Q. G.; Kang, X. C.; Liu, H. Z.; Qian, Q. L.; Ma, J.; Zhang, Z. F.; Yang, G. Y.; Han, B. X. Design of a Cu(I)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid. Green Chem. 2017, 19, 2086-2091.
[4]
Kuang, M.; Guan, A. X.; Gu, Z. X.; Han, P.; Qian, L. P.; Zheng, G. F. Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Res. 2019, 12, 2324-2329.
[5]
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[6]
Tan, S.; Tackett, B. M.; He, Q.; Lee, J. H.; Chen, J. G.; Wong, S. S. Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W2N3). Nano Res. 2020, 13, 1434-1443.
[7]
Wang, T. T.; Zhao, Q. D.; Fu, Y. Y.; Lei, C. J.; Yang, B.; Li, Z. J.; Lei, L. C.; Wu, G.; Hou, Y. Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods 2019, 3, 1900210.
[8]
Wang, X. Y.; Zhao, Q. D.; Yang, B.; Li, Z. J.; Bo, Z.; Lam, K. H.; Adli, N. M.; Lei, L. C.; Wen, Z. H.; Wu, G., et al. Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO2 reduction to CO. J. Mater. Chem. A 2019, 7, 25191-25202.
[9]
Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132-16135.
[10]
Tornow, C. E.; Thorson, M. R.; Ma, S. C.; Gewirth, A. A.; Kenis, P. J. A. Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J. Am. Chem. Soc. 2012, 134, 19520-19523.
[11]
Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288-4291.
[12]
Zhang, C. H.; Yang, S. Z.; Wu, J. J.; Liu, M. J.; Yazdi, S.; Ren, M. Q.; Sha, J. W.; Zhong, J.; Nie, K. Q.; Jalilov, A. S. et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 2018, 8, 1703487.
[13]
Wang, T. T.; Sang, X. H.; Zheng, W. Z.; Yang, B.; Yao, S. Y.; Lei, C. J.; Li, Z. J.; He, Q. G.; Lu, J. G.; Lei, L. C., et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv. Mater. 2020, 32, 2002430.
[14]
Zhong, H. X.; Meng. F. L.; Zhang, Q.; Liu, K. H.; Zhang, X. B. Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere. Nano Res. 2019, 12, 2318-2323.
[15]
Feng, S. H.; Zheng, W. Z.; Zhu, J. K.; Li, Z. J.; Yang, B.; Wen, Z. H.; Lu, J. G.; Lei, L. C.; Wang, S. B.; Hou, Y. Porous metal-porphyrin triazine-based frameworks for efficient CO2 electroreduction. Appl. Catal. B Environ. 2020, 270, 118908.
[16]
Chen, H. L.; Chen, J. X.; Si, J. C.; Hou, Y.; Zheng, Q.; Yang, B.; Li, Z. J.; Gao, L. G.; Lei, L. C.; Wen, Z. H., et al. Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO2 into formate. Chem. Sci. 2020, 11, 3952-3958.
[17]
Fu, Y. Y.; Wang, T. T.; Zheng, W. Z.; Lei, C. J.; Yang, B.; Chen, J.; Li, Z. J.; Lei, L. C.; Yuan, C.; Hou, Y. Nanoconfined tin oxide within N-doped nanocarbon supported on electrochemically exfoliated graphene for efficient electroreduction of CO2 to formate and C1 products. ACS Appl. Mater. Interfaces 2020, 12, 16178-16185.
[18]
Wei, F. C.; Wang, T. T.; Jiang, X. L.; Ai, Y.; Cui, A. Y.; Cui, J.; Fu, J. W.; Cheng, J. G.; Lei, L. C.; Hou, Y., et al. Controllably engineering mesoporous surface and dimensionality of SnO2 toward high-performance CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 2002092.
[19]
Xiong, W.; Yang, J.; Shuai, L.; Hou, Y.; Qiu, M.; Li, X. Y.; Leung, M. K. H. CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction. ChemElectroChem 2019, 6, 5951-5957.
[20]
Sun, J. J.; Zheng, W. Z.; Lyu, S. L.; He, F.; Yang, B.; Li, Z. J.; Lei, L. C.; Hou, Y. Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate. Chin. Chem. Lett. 2020, 31, 1415-1421.
[21]
Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao R.; Zhuang, Z. B., el at. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856-2863.
[22]
Xia, Z.; Freeman, M.; Zhang, D. X.; Yang, B.; Lei, L. C.; Li, Z. J.; Hou, Y. Highly selective electrochemical conversion of CO2 to HCOOH on dendritic indium foams. ChemElectroChem 2018, 5, 253-259.
[23]
Shang, H. S.; Wang, T.; Pei, J. J.; Jiang Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong J. C.; Zhuang Z. B.; Chen, W. X., et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465-22469.
[24]
Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J., et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.
[25]
Nie, X. W.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps. Angew. Chem., Int. Ed. 2013, 52, 2459-2462.
[26]
Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073-4082.
[27]
Zhang, L.; Zhao, Z. J.; Gong, J. L. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew. Chem., Int. Ed. 2017, 56, 11326-11353.
[28]
Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J; Huang, W. X., et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944-1948.
[29]
Zheng, W. Z.; Guo, C. X.; Yang, J.; He, F.; Yang, B.; Li, Z. J.; Lei, L. C.; Xiao, J. P.; Wu, G.; Hou, Y. Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction. Carbon 2019, 150, 52-59.
[30]
Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893-903.
[31]
Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825-832.
[32]
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.
[33]
Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.
[34]
Geioushy, R. A.; Khaled, M. M.; Alhooshani, K.; Hakeem, A. S.; Rinaldi, A. Graphene/ZnO/Cu2O electrocatalyst for selective conversion of CO2 into n-propanol. Electrochim. Acta 2017, 245, 456-462.
[35]
Lee, S.; Kim, D.; Lee, J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O-Cu catalyst. Angew. Chem., Int. Ed. 2015, 127, 14914-14918.
[36]
Reller, C.; Krause, R.; Volkova, E.; Schmid, B.; Neubauer, S.; Rucki, A.; Schuster, M.; Schmid, G. Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 2017, 7, 1602114.
[37]
Mangione, G.; Huang, J. F.; Buonsanti, R.; Corminboeuf, C. Dual-facet mechanism in copper nanocubes for electrochemical CO2 reduction into ethylene. J. Phys. Chem. Lett. 2019, 10, 4259-4265.
[38]
Yang, Y.; Ajmal, S.; Feng, Y. Q.; Li, K. J.; Zheng, X. Z.; Zhang, L. W. Insight into the formation and transfer process of the first intermediate of CO2 reduction over Ag-decorated dendritic Cu. Chem.—Eur. J. 2020, 26, 4080-4089.
[39]
Chao, T. T.; Hu, Y. M.; Hong, X.; Li, Y. D. Design of noble metal electrocatalysts on an atomic level. ChemElectroChem 2019, 6, 289-303..
[40]
Yang, K. D.; Lee, C. W.; Jin, K.; Im, S. W.; Nam, K. T. Current status and bioinspired perspective of electrochemical conversion of CO2 to a long-chain hydrocarbon. J. Phys. Chem. Lett. 2017, 8, 538-545.
[41]
Gu, Z. X.; Shen, H.; Shang, L. M.; Lv, X. M.; Qian, L. P.; Zheng, G. F. Nanostructured copper-based electrocatalysts for CO2 reduction. Small Methods 2018, 2, 1800121.
[42]
Lee, C. W.; Yang, K. D.; Nam, D. H.; Jang, J. H.; Cho, N. H.; Im, S. W.; Nam, K. T. Defining a materials database for the design of copper binary alloy catalysts for electrochemical CO2 conversion. Adv. Mater. 2018, 30, 1704717.
[43]
Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41-54.
[44]
Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732-745.
[45]
Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198-210.
[46]
Ringe, S.; Clark, E. L.; Resasco, J.; Walton, A.; Seger, B.; Bell, A. T.; Chan, K. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 2019, 12, 3001-3014.
[47]
Todorova, T. K.; Schreiber, M. W.; Fontecave, M. Mechanistic Understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 2020, 10, 1754-1768.
[48]
Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.
[49]
Ma, S. C.; Sadakiyo, M.; Luo, R.; Heima, M.; Yamauchi, M.; Kenis, P. J. A. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 2016, 301, 219-228.
[50]
Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high Faradaic efficiencies. Adv. Mater. 2018, 30, 1706194.
[51]
Hoang, T. T. H.; Ma, S. C.; Gold, J. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 2017, 7, 3313-3321.
[52]
Mi, Y. Y.; Shen, S. B.; Peng, X. Y.; Bao, H. H.; Liu, X. J.; Luo, J. Selective electroreduction of CO2 to C2 products over Cu3N-derived Cu nanowires. ChemElectroChem 2019, 6, 2393-2397.
[53]
Ren, D.; Ang, B. S. H.; Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 2016, 6, 8239-8247.
[54]
Hoang, T. T. H.; Verma, S.; Ma, S. C.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791-5797.
[55]
Shen, S. B.; Peng, X. Y.; Song, L. D.; Qiu, Y.; Li, C.; Zhuo, L. C.; He, J.; Ren, J. Q.; Liu, X. J.; Luo, J. AuCu alloy nanoparticle embedded Cu submicrocone arrays for selective conversion of CO2 to ethanol. Small 2019, 15, 1902229.
[56]
Ren, D.; Deng, Y. L.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 2015, 5, 2814-2821.
[57]
Zhu, Q. G.; Sun, X. F.; Yang, D. X.; Ma, J.; Kang, X. C.; Zheng, L. R.; Zhang, J.; Wu, Z. H.; Han, B. X. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 2019, 10, 3851.
[58]
Liu, Y. M.; Fan, X. F.; Nayak, A.; Wang, Y.; Shan, B.; Quan, X.; Meyer, T. J. Steering CO2 electroreduction toward ethanol production by a surface-bound Ru polypyridyl carbene catalyst on N-doped porous carbon. Proc. Natl. Acad. Sci. USA 2019, 116, 26353-26358.
[59]
Song, Y. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Wei, W.; Sun, Y. H. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew. Chem., Int. Ed. 2017, 56, 10840-10844.
[60]
Liu, Y. M.; Zhang, Y. J.; Cheng, K.; Quan, X.; Fan, X. F.; Su, Y.; Chen, S.; Zhao, H. M.; Zhang, Y. B.; Yu, H. T. et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-co-doped nanodiamond. Angew. Chem., Int. Ed. 2017, 56, 15607-15611.
[61]
Chen, C. S.; Handoko, A. D.; Wan, J. H.; Ma, L.; Ren, D.; Yeo, B. S. Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 2015, 5, 161-168.
[62]
Loiudice, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2016, 55, 5789-5792.
[63]
Chen, X. Y.; Henckel, D. A.; Nwabara, U. O.; Li, Y. Y.; Frenkel, A. I.; Fister, T. T.; Kenis, P. J. A.; Gewirth, A. A. Controlling speciation during CO2 reduction on Cu-alloy electrodes. ACS Catal. 2020, 10, 672-682.
[64]
Weng, Z.; Zhang, X.; Wu, Y. S.; Huo, S. J.; Jiang, J. B.; Liu, W.; He, G. J.; Liang, Y. Y.; Wang, H. L. Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem., Int. Ed. 2017, 56, 13135-13139.
[65]
Kim, D.; Lee, S.; Ocon, J. D.; Jeong, B.; Lee, J. K.; Lee, J. Insights into an autonomously formed oxygen-evacuated Cu2O electrode for the selective production of C2H4 from CO2. Phys. Chem. Chem. Phys. 2015, 17, 824-830.
[66]
Altaf, N.; Liang, S. Y.; Huang, L.; Wang, Q. Electro-derived Cu-Cu2O nanocluster from LDH for stable and selective C2 hydrocarbons production from CO2 electrochemical reduction. J. Energy Chem. 2020, 48, 169-180.
[67]
Cheng, Y. S.; Chu, X. P.; Ling, M.; Li, N.; Wu, K. L.; Wu, F. H.; Li, H.; Yuan, G. Z.; Wei, X. W. An MOF-derived copper@nitrogen-doped carbon composite: The synergistic effects of N-types and copper on selective CO2 electroreduction. Catal. Sci. Technol. 2019, 9, 5668-5675.
[68]
Li, Q.; Zhu, W. L.; Fu, J. J.; Zhang, H. Y.; Wu, G.; Sun, S. H. Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 2016, 24, 1-9.
[69]
Yang, K. D.; Ko, W. R.; Lee, J. H.; Kim, S. J.; Lee, H.; Lee, M. H.; Nam, K. T. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem., Int. Ed. 2017, 56, 796-800.
[70]
Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680-6684.
[71]
Kas, R.; Kortlever, R.; Milbrat, A.; Koper, M. T. M.; Mul, G.; Baltrusaitis, J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 2014, 16, 12194-12201.
[72]
Genovese, C.; Ampelli, C.; Perathoner, S.; Centi, G. Mechanism of C-C bond formation in the electrocatalytic reduction of CO2 to acetic acid. A challenging reaction to use renewable energy with chemistry. Green Chem. 2017, 19, 2406-2415.
[73]
Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631-11636.
[74]
Wu, J. J.; Ma, S. C.; Sun, J.; Gold, J. I.; Tiwary, C.; Kim, B.; Zhu, L. Y.; Chopra, N.; Odeh, I. N.; Vajtai, R. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 2016, 7, 13869.
[75]
Ren, D.; Wong, N. T.; Handoko, A. D.; Huang, Y.; Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 2016, 7, 20-24.
[76]
Kim, D.; Kley, C. S.; Li, Y. F.; Yang, P. D. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products. Proc. Natl. Acad. Sci. USA 2017, 114, 10560-10565.
[77]
Handoko, A. D.; Wei, F. X.; Jenndy; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922-934.
[78]
Pan, F. P.; Yang, Y. Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 2020, 13, 2275-2309.
[79]
Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2011, 2, 1902-1909.
[80]
Hori, Y.; Murata, A.; Takahashi, R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. 1989, 85, 2309-2326.
[81]
Xiao, H.; Goddard III, W. A.; Cheng, T.; Liu, Y. Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. USA 2017, 114, 6685-6688.
[82]
Liu, X. Y.; Schlexer, P.; Xiao, J. P.; Ji, Y. F.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H. J.; Ringe, S., et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 2019, 10, 32.
[83]
Feroci, M.; Orsini, M.; Rossi, L.; Sotgiu, G.; Inesi, A. Electrochemically promoted C-N bond formation from amines and CO2 in ionic liquid BMIm-BF4: Synthesis of carbamates. J. Org. Chem. 2007, 72, 200-203.
[84]
Bhugun, I.; Lexa, D.; Savéant, J. M. Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins. Synergistic effect of lewis acid cations. J. Phys. Chem. 1996, 100, 19981-19985.
[85]
Kyriacou, D.; Jahngen, E. G. E. An electrogenerative acidobasic cell utilizing biomass for the generation of electricity and molecular hydrogen. J. Appl. Electrochem. 1993, 23, 1196-1198.
[86]
Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X. Y.; Higgins, D. C.; Chan, K.; Nørskov, J. K., Hahn, C. et al. Electrochemical carbon monoxide reduction on polycrystalline copper: Effects of potential, pressure, and pH on selectivity toward multicarbon and oxygenated products. ACS Catal. 2018, 8, 7445-7454.
[87]
Schouten, K. J. P.; Qin, Z. S.; Pérez Gallent, E.; Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 2012, 134, 9864-9867.
[88]
Schouten, K. J. P.; Pérez Gallent, E.; Koper, M. T. M. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 2014, 716, 53-57.
[89]
Roberts, F. S.; Kuhl, K. P.; Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem., Int. Ed. 2015, 54, 5179-5182.
[90]
Hori, Y. Electrochemical CO2 reduction on metal electrodes. In Modern Aspects of Electrochemistry; Vayenas, C. G.; White, R. E.; Gamboa-Aldeco, M. E., Eds.; Springer: New York, 2008; pp 89-189.
[91]
Varela, A. S.; Kroschel, M.; Reier, T.; Strasser, P. Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH. Catal. Today 2016, 260, 8-13.
[92]
DiMeglio, J. L.; Rosenthal, J. Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J. Am. Chem. Soc. 2013, 135, 8798-8801.
[93]
Meekins, B. H.; Kamat, P. V. Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. ACS Nano 2009, 3, 3437-3446.
[94]
Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050-7059.
[95]
Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 1997, 101, 7075-7081.
[96]
Kathiresan, M.; Velayutham, D. Ionic liquids as an electrolyte for the electro synthesis of organic compounds. Chem. Commun. 2015, 51, 17499-17516.
[97]
Eshetu, G. G.; Armand, M.; Ohno, H.; Scrosati, B.; Passerini, S. Ionic liquids as tailored media for the synthesis and processing of energy conversion materials. Energy Environ. Sci. 2016, 9, 49-61.
[98]
Shi, J.; Shi, F.; Song, N.; Liu, J. X.; Yang, X. K.; Jia, Y. J.; Xiao, Z. W.; Du, P. A novel electrolysis cell for CO2 reduction to CO in ionic liquid/organic solvent electrolyte. J. Power Sources 2014, 259, 50-53.
[99]
Oh, Y; Hu, X. L. Ionic liquids enhance the electrochemical CO2 reduction catalyzed by MoO2. Chem. Commun. 2015, 51, 13698-13701.
[100]
Zhang, S.; Kang, P.; Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 2014, 136, 7845-7848.
[101]
Medina-Ramos, J.; Pupillo, R. C.; Keane, T. P.; DiMeglio, J. L.; Rosenthal, J. Efficient conversion of CO2 to CO using Tin and other inexpensive and easily prepared post-transition metal catalysts. J. Am. Chem. Soc. 2015, 137, 5021-5027.
[102]
Chu, D. B.; Qin, G. X.; Yuan, X. M.; Xu, M.; Zheng, P.; Lu, J. Fixation of CO2 by electrocatalytic reduction and electropolymerization in ionic liquid-H2O solution. ChemSusChem 2008, 1, 205-209.
[103]
Rosen, B. A.; Haan, J. L.; Mukherjee, P.; Braunschweig, B.; Zhu, W.; Salehi-Khojin, A.; Dlott, D. D.; Masel, R. I. In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide. J. Phys. Chem. C 2012, 116, 15307-15312.
[104]
Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 2011, 334, 643-644.
[105]
Feng, Q. J.; Liu, S. Q.; Wang, X. Y.; Jin, G. H. Nanoporous copper incorporated platinum composites for electrocatalytic reduction of CO2 in ionic liquid BMIMBF4. Appl. Surf. Sci. 2012, 258, 5005-5009.
[106]
Kaneco, S.; Iiba, K.; Ohta, K.; Mizuno, T. Electrochemical reduction of carbon dioxide on copper in methanol with various potassium supporting electrolytes at low temperature. J. Solid State Electrochem. 1999, 3, 424-428.
[107]
Kaneco, S.; Iiba, K.; Katsumata, H.; Suzuki, T.; Ohta, K. Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol. J. Solid State Electrochem. 2007, 11, 490-495.
[108]
Khezri, B.; Fisher, A. C.; Pumera, M. CO2 reduction: The quest for electrocatalytic materials. J. Mater. Chem. A 2017, 5, 8230-8246.
[109]
Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 2015, 6, 2032-2037.
[110]
Birhanu, M. K.; Tsai, M. C.; Kahsay, A. W.; Chen, C. T.; Zeleke, T. S.; Ibrahim, K. B.; Huang, C. J.; Su, W. N.; Hwang, B. J. Copper and copper-based bimetallic catalysts for carbon dioxide electroreduction. Adv. Mater. Interfaces 2018, 5, 1800919.
[111]
Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646-7659.
[112]
Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809-1831.
[113]
Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mate. 2016, 1, 16064.
[114]
Zou, X. L.; Liu, M. J.; Wu, J. J.; Ajayan, P. M.; Li, J.; Liu, B. L.; Yakobson, B. I. How nitrogen-doped graphene quantum dots catalyze electroreduction of CO2 to hydrocarbons and oxygenates. ACS Catal. 2017, 7, 6245-6250.
[115]
Mao, X.; Kour, G.; Zhang, L.; He, T. W.; Wang, S. F.; Yan, C.; Zhu, Z. H.; Du, A. J. Silicon-doped graphene edges: An efficient metal-free catalyst for the reduction of CO2 into methanol and ethanol. Catal. Sci. Technol. 2019, 9, 6800-6807.
[116]
Nakata, K.; Ozaki, T.; Terashima, C.; Fujishima, A.; Einaga, Y. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem., Int. Ed. 2014, 53, 871-874.
[117]
Lan, Y. C.; Niu, G. Q.; Wang, F.; Cui, D. H.; Hu, Z. F. SnO2-modified two-dimensional CuO for enhanced electrochemical reduction of CO2 to C2H4. ACS Appl. Mater. Interfaces 2020, 12, 36128-36136.
[118]
Xiao, X. X.; Xu, Y. L.; Lv, X. M.; Xie, J. M.; Liu, J.; Yu, C. L. Electrochemical CO2 reduction on copper nanoparticles-dispersed carbon aerogels. J. Colloid Interface Sci. 2019, 545, 1-7.
[119]
Jia, C.; Dastafkan, K.; Ren, W. H.; Yang, W. F.; Zhao, C. Carbon-based catalysts for electrochemical CO2 reduction. Sustain. Energy Fuels 2019, 3, 2890-2906.
[120]
Vasileff, A.; Zheng, Y.; Qiao, S. Z. Carbon solving carbon's problems: Recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 2017, 7, 1700759.
[121]
Zhao, J.; Chen, Z.; Zhao, J. X. Metal-free graphdiyne doped with sp-hybridized boron and nitrogen atoms at acetylenic sites for high-efficiency electroreduction of CO2 to CH4 and C2H4. J. Mater. Chem. A 2019, 7, 4026-4035.
[122]
Coban, H. B. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng. 2020, 43, 569-591.
[123]
Liu, Y.; Li, Y. W; Chen, Y. Z.; Qu, T.; Shu, C. Y.; Yang, X. D.; Zhu, H. Y.; Guo, S. W.; Zhao, S. D.; Asefa, T., et al. A CO2/H2 fuel cell: Reducing CO2 while generating electricity. J. Mater. Chem. A 2020, 8, 8329-8336.
[124]
Zhao, J.; Xue, S.; Barber, J.; Zhou, Y. W.; Meng, J.; Ke, X. B. An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction. J. Mater. Chem. A 2020, 8, 4700-4734.
[125]
Han, Z. J.; Kortlever, R.; Chen, H. Y.; Peters, J. C.; Agapie, T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 2017, 3, 853-859.
[126]
Schizodimou, A.; Kyriacou, G. Acceleration of the reduction of carbon dioxide in the presence of multivalent cations. Electrochim. Acta 2012, 78, 171-176.
[127]
Kyriacou G. Z.; Anagnostopoulos, A. K. Influence CO2 partial pressure and the supporting electrolyte cation on the product distribution in CO2 electroreduction. J. Appl. Electrochem. 1993, 23, 483-486.
[128]
Ogura, K.; Ferrell III, J. R.; Cugini, A. V.; Smotkin, E. S.; Salazar-Villalpando, M. D. CO2 attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction. Electrochim. Acta 2010, 56, 381-386.
[129]
Lee, S.; Ocon, J. D.; Son, Y. I.; Lee, J. Alkaline CO2 electrolysis toward selective and continuous HCOO- production over SnO2 nanocatalysts. J. Phys. Chem. C 2015, 119, 4884-4890.
[130]
Hu, B. X.; Stancovski, V.; Morton, M.; Suib, S. L. Enhanced electrocatalytic reduction of CO2/H2O to paraformaldehyde at Pt/metal oxide interfaces. Appl. Catal. A Gen. 2010, 382, 277-283.
Nano Research
Pages 3188-3207
Cite this article:
Chen J, Wang T, Li Z, et al. Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. Nano Research, 2021, 14(9): 3188-3207. https://doi.org/10.1007/s12274-021-3335-x
Topics:
Part of a topical collection:

1037

Views

67

Crossref

72

Web of Science

73

Scopus

9

CSCD

Altmetrics

Received: 16 December 2020
Revised: 09 January 2021
Accepted: 14 January 2021
Published: 05 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return