AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Advances in green synthesis and applications of graphene

Qi Yu1,2( )Jianchao Jiang1Liyun Jiang1Qingqing Yang1Ning Yan2
Shaanxi Key Laboratory of Catalysis, School of Materials Science and EngineeringShaanxi University of TechnologyHanzhong723001China
Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
Show Author Information

Graphical Abstract

Abstract

Green synthesis has grabbed appreciable attention to eliminate the negative effects associated with various chemical processes. Due to the unparalleled electrical, mechanical, thermal and excellent physical properties, graphene, as the thinnest two-dimensional material with high surface area, has the unfathomable potential in the domain of green chemistry in terms of both synthesis and application. In this regard, we present an overview of the research progresses on the greener synthesis of graphene, including micromechanical exfoliation, chemical reduction of graphene oxide (GO), chemical vapor synthesis and popping of GO. Meanwhile, various applications of graphene pertinent to sustainable developments, such as energy storage, catalysis, electrochemistry, fuel cell, supercapacitor and biomedicine have also been highlighted.

References

1
Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998.
2

Novoselov, K. S.; Geim, A. K.; Morozov, S V.; Jiang, D.; Zhang, Y.; Dubonos, S V.; Grigorieva, I V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

3

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

4

Smolsky, J. M.; Krasnoslobodtsev, A. V. Nanoscopic imaging of oxidized graphene monolayer using tip-enhanced Raman scattering. Nano Res. 2018, 11, 6346–6359.

5

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

6

Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

7

Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of grapheme. Nano Res. 2008, 1, 273–291.

8

Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Yadav, R. M.; Verma, R. K.; Singh, D. P.; Tan, W. K.; del Pino, A. P.; Moshkalev, S. A. et al. A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: Recent progress and perspectives. Nano Res. 2019, 12, 2655–2694.

9

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

10

Yang, L. S.; Chen, W. J.; Yu, Q. M.; Liu, B. L. Mass production of two-dimensional materials beyond graphene and their applications. Nano Res. 2021, 14, 1583–1597.

11

Maqbool, M.; Guo, H. C.; Bashir, A.; Usman, A.; Abid, A. Y.; He, G. S.; Ren, Y. J.; Ali, Z.; Bai, S. L. Enhancing through-plane thermal conductivity of fluoropolymer composite by developing in situ nano-urethane linkage at graphene-graphene interface. Nano Res. 2020, 13, 2741–2748.

12

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201–204.

13

Xue, Y. Z.; Wu, B.; Guo, Y. L.; Huang, L. P.; Jiang, L.; Chen, J. Y.; Geng, D. C.; Liu, Y. Q.; Hu, W. P.; Yu, G. Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res. 2011, 4, 1208–1214.

14

Yang, X. J.; Yan, M. D. Removing contaminants from transferred CVD graphene. Nano Res. 2020, 13, 599–610.

15
Dreyer, D. R.; Park, S. J.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.https://doi.org/10.1039/B917103G
16

Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

17

Wu, Y. P.; Wang, B.; Ma, Y. F.; Huang, Y.; Li, N.; Zhang, F.; Chen, Y. S. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res. 2010, 3, 661–669.

18

Malik, S.; Vijayaraghavan, A.; Erni, R.; Ariga, K.; Khalakhan, I.; Hill, J. P. High purity graphenes prepared by a chemical intercalation method. Nanoscale 2010, 2, 2139–2143.

19

Dai, B. Y.; Fu, L.; Liao, L.; Liu, N.; Yan, K.; Chen, Y. S.; Liu, Z. F. High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Res. 2011, 4, 434–439.

20

Hong, Y. Z.; Wang, Z. Y.; Jin, X. B. Sulfuric acid intercalated graphite oxide for graphene preparation. Sci. Rep. 2013, 3, 3439.

21

Liu, B. Z.; Wang, H. H.; Gu, W.; Zhou, L.; Chen, Z. L.; Nie, Y. F.; Tan, C. W.; Ci, H. N.; Wei, N.; Cui, L. Z. et al. Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications. Nano Res. 2020, 14, 260–267.

22

Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z. Z.; Tour, J. M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 2010, 4, 2059–2069.

24

Gurunathan, S.; Han, J. W.; Kim, J. H. Green chemistry approach for the synthesis of biocompatible graphene. Int. J. Nanomedicine 2013, 8, 2719–2732.

25

Jiang, B.; Zhao, Q. Y.; Zhang, Z. P.; Liu, B. Z.; Shan, J. Y.; Zhao, L.; Rümmeli, M. K.; Gao, X.; Zhang, Y. F.; Yu, T. J. et al. Batch synthesis of transfer-free graphene with wafer-scale uniformity. Nano Res. 2020, 13, 1564–1570.

25

Paredes, J. I.; Villar-Rodil, S.; Fernández-Merino, M. J.; Guardia, L.; Martínez-Alonso, A.; Tascón, J. M. D. Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. J. Mater. Chem. 2011, 21, 298–306.

26

Qian, W.; Hao, R.; Hou, Y. L.; Tian, Y.; Shen, C. M.; Gao, H. J.; Liang, X. L. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res. 2009, 2, 706–712.

27

Chen, J. P.; Shi, W. L.; Gao, Z. F.; Wang, T.; Wang, S.; Dong, L. J.; Yang, Q. L.; Xiong, C. X. Facile preparation of pristine graphene using urea/glycerol as efficient stripping agents. Nano Res. 2018, 11, 820–830.

28

Erythropel, H. C.; Zimmerman, J. B.; de Winter, T. M.; Petitjean, L.; Melnikov, F.; Lam, C. H.; Lounsbury, A. W.; Mellor, K. E.; Janković, N. Z.; Tu, Q. S. et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem. 2018, 20, 1929–1961.

29

Rogers, L.; Jensen, K. F. Continuous manufacturing – the Green Chemistry promise. Green Chem. 2019, 21, 3481–3498.

30
Wang, G. M.; Qian, F.; Saltikov, C. W.; Jiao, Y. Q.; Li, Y. Microbial reduction of graphene oxide by Shewanella. Nano Res. 2011, 4, 563–570.https://doi.org/10.1007/s12274-011-0112-2
31

Sheldon, R. A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18–43.

32

Iacopi, F.; McIntosh, M. Opportunities and perspectives for green chemistry in semiconductor technologies. Green Chem. 2019, 21, 3250–3255.

33

Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150.

34

Yi, M.; Shen, Z. G. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700– 11715.

35

Alaferdov, A. V.; Gholamipour-Shirazi, A.; Canesqui, M. A.; Danilov, Y. A.; Moshkalev, S. A. Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite. Carbon 2014, 69, 525–535.

36

Cai, M. Z.; Thorpe, D.; Adamson, D. H.; Schniepp, H. C. Methods of graphite exfoliation. J. Mater. Chem. 2012, 22, 24992–25002.

37

Fu, Y. X.; Wang, X. M.; Mo, D. C.; Lu, S. S. Production of monolayer, trilayer, and multi-layer graphene sheets by a re-expansion and exfoliation method. J. Mater. Sci. 2014, 49, 2315–2323.

38

Guo, S. J.; Dong, S. J. Graphenenanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644–2672.

39

De Silva, K. K. H.; Huang, H. H.; Joshi, R. K.; Yoshimura, M. Chemical reduction of graphene oxide using green reductants. Carbon 2017, 119, 190–199.

40

Chua, C. K.; Pumera, M. Covalent chemistry on graphene. Chem. Soc. Rev. 2013, 42, 3222–3233.

41

Choi, S. H.; Lee, J. K.; Kang, Y. C. Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries. Nano Res. 2015, 8, 1584–1594.

42

Chua, C. K.; Sofer, Z.; Pumera, M. Graphite oxides: Effects of permanganate and chlorate oxidants on the oxygen composition. Chem. —Eur. J. 2012, 18, 13453–13459.

43

Brodie, B. C. Sur le poids atomique du graphite. Ann. Chim. Phys. 1860, 59, 466–472.

44

Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.

45

Chua, C. K.; Pumera, M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chem. Soc. Rev. 2014, 43, 291–312.

46

Chua, C. K.; Pumera, M. Reduction of graphene oxide with substituted borohydrides. J. Mater. Chem. A 2013, 1, 1892–1898.

47

Pham, V. H.; Hur, S. H.; Kim, E. J.; Kim, B. S.; Chung, J. S. Highly efficient reduction of graphene oxide using ammonia borane. Chem. Commun. 2013, 49, 6665–6667.

48

Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides. Chem. Mater. 2012, 24, 2292–2298.

49

Moon, I. K.; Lee, J. Y.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

50

Qi, M.; Song, J. P.; Jin, C.; Li, Z. P.; Liu, J. H.; Meng, S. M.; Zhao, J. G.; Guo, Y. A rapid and easy approach for the reduction of graphene oxide by formamidinesulfinic acid. Carbon 2013, 54, 36–41.

51

Pham, V. H.; Cuong, T. V.; Nguyen-Phan, T. D.; Pham, H. D.; Kim, E. J.; Hur, S. H.; Shin, E. W.; Kim, S.; Chung, J. S. One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem. Commun. 2010, 46, 4375–4377.

52

Zhang, S.; Shao, Y. Y.; Liao, H. G.; Engelhard, M. H.; Yin, G. P.; Lin, Y. H. Polyelectrolyte-induced reduction of exfoliated graphite oxide: A facile route to synthesis of soluble graphene nanosheets. ACS Nano 2011, 5, 1785–1791.

53

Dreyer, D. R.; Murali, S.; Zhu, Y. W.; Ruoff, R. S.; Bielawski, C. W. Reduction of graphite oxide using alcohols. J. Mater. Chem. 2011, 21, 3443–3447.

54

Li, J.; Xiao, G. Y.; Chen, C. B.; Li, R.; Yan, D. Y. Superior dispersions of reduced graphene oxide synthesized by using gallic acid as a reductant and stabilizer. J. Mater. Chem. A 2013, 1, 1481–1487.

55

Liu, Y. Z.; Li, Y. F.; Yang, Y. G.; Wen, Y. F.; Wang, M. Z. Reduction of graphene oxide by thiourea. J. Nanosci. Nanotechnol. 2011, 11, 10082–10086.

56

Some, S.; Kim, Y. M.; Yoon, Y. H.; Yoo, H. J.; Lee, S.; Park, Y.; Lee, H. High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci. Rep. 2013, 3, 1929.

57

Pham, V. H.; Pham, H. D.; Dang, T. T.; Hur, S. H.; Kim, E. J.; Kong, B. S.; Kim, S.; Chung, J. S. Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen. J. Mater. Chem. 2012, 22, 10530–10536.

58

Barman, B. K.; Mahanandia, P.; Nanda, K. K. Instantaneous reduction of graphene oxide at room temperature. RSC Adv. 2013, 3, 12621–12624.

59

Liu, Y. S; Luo, F. P. Large-scale highly ordered periodic Au nano-discs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering. Nano Res. 2019, 12, 2788– 2795.

60

Yang, S.; Yue, W. B.; Huang, D. Z.; Chen, C. F.; Lin, H.; Yang, X. J. A facile green strategy for rapid reduction of graphene oxide by metallic zinc. RSC Adv. 2012, 2, 8827–8832.

61

Feng, H. B.; Cheng, R.; Zhao, X.; Duan, X. F.; Li, J. H. A low-temperature method to produce highly reduced graphene oxide. Nat Commun. 2013, 4, 1539.

62

Bose, S.; Kuila, T.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: An environmentally friendly method. J. Mater. Chem. 2012, 22, 9696–9703.

63

Ma, J. K.; Wang, X. R.; Liu, Y.; Wu, T.; Liu, Y.; Guo, Y. Q.; Li, R. Q.; Sun, X. Y.; Wu, F.; Li, C. B. et al. Reduction of graphene oxide with L-lysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte. J. Mater. Chem. A 2013, 1, 2192–2201.

64

Thakur, S.; Karak, N. Green reduction of graphene oxide by aqueous phytoextracts. Carbon 2012, 50, 5331–5339.

65

Haghighi, B.; Tabrizi, M. A. Green-synthesis of reduced graphene oxide nanosheets using rose water and a survey on their characteristics and applications. RSC Adv. 2013, 3, 13365–13371.

66

Kuila, T.; Bose, S.; Khanra, P.; Mishra, A. K.; Kim, N. H.; Lee, J. H. A green approach for the reduction of graphene oxide by wild carrot root. Carbon 2012, 50, 914–921.

67

Liu, J. B.; Fu, S. H.; Yuan, B.; Li, Y. L.; Deng, Z. X. Toward a universal "adhesive nanosheet" for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J. Am. Chem. Soc. 2010, 132, 7279–7281.

68

Esfandiar, A.; Akhavan, O.; Irajizad, A. Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 2011, 21, 10907–10914.

69

Somani, P. R.; Somani, S. P.; Umeno, M. Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59.

70

Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang, Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 2018, 11, 1124–1134.

71

Zhang, Y.; Zhang, L. Y.; Zhou, C. W. Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 2013, 46, 2329–2339.

72

Orofeo, C. M.; Ago, H.; Hu, B. S.; Tsuji, M. Synthesis of large area, homogeneous, single layer graphene films by annealing amorphous carbon on Co and Ni. Nano Res. 2011, 4, 531–540.

73

Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

74

Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

75

Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

76

Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt (111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.

77

Varykhalov, A.; Rader, O. Graphene grown on Co (0001) films and islands: Electronic structure and its precise magnetization dependence. Phys. Rev. B 2009, 80, 035437.

78

Kwon, S. Y.; Ciobanu, C. V.; Petrova, V.; Shenoy, V. B.; Bareño, J.; Gambin, V.; Petrov, I.; Kodambaka, S. Growth of semiconducting graphene on palladium. Nano Lett. 2009, 9, 3985–3990.

79

Miniussi, E.; Pozzo, M.; Baraldi, A.; Vesselli, E.; Zhan, R. R.; Comelli, G.; Menteş, T. O.; Niño, M. A.; Locatelli, A.; Lizzit, S. et al. Thermal stability of corrugated epitaxial graphene grown on Re(0001). Phys. Rev. Lett. 2011, 106, 216101.

80

Muñoz, B.; Gómez-Aleixandre, C. Review of CVD synthesis of graphene. Chem. Vapor Depos. 2013, 19, 297–322.

81

Lu, C.; Li, Z. Z.; Xia, Z.; Ci, H. N.; Cai, J. S.; Song, Y. Z.; Yu, L. H.; Yin, W. J.; Dou, S. X.; Sun, J. Y. et al. Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res. 2019, 12, 3051–3058.

82

Kraus, J.; Böcklein, S.; Reichelt, R.; Günther, S.; Santos, B.; Menteş, T. O.; Locatelli, A. Towards the perfect graphene membrane? – Improvement and limits during formation of high quality graphene grown on Cu-foils. Carbon 2013, 64, 377–390.

83

Srivastava, A.; Galande, C.; Ci, L. J.; Song, L.; Rai, C.; Jariwala, D.; Kelly, K. F.; Ajayan, P. M. Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem. Mater. 2010, 22, 3457–3461.

84

Zhang, B.; Lee, W. H.; Piner, R.; Kholmanov, I.; Wu, Y. P.; Li, H. F.; Ji, H. X.; Ruoff, R. S. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano. 2012, 6, 2471–2476.

85

Huet, B.; Raskin, J. P. Pressure-controlled chemical vapor deposition of single-layer graphene with millimeter-size domains on thin copper film. Chem. Mater. 2017, 29, 3431–3440.

86

Huet, B.; Raskin, J. P. Role of Cu foil in-situ annealing in controlling the size and thickness of CVD graphene domains. Carbon 2018, 129, 270–280.

87

Huet, B.; Raskin, J. P. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene. Nanoscale 2018, 10, 21898–21909.

88

Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 2011, 49, 4122–4130.

89

Deokar, G.; Avila, J.; Razado-Colambo, I.; Codron, J. L.; Boyaval, C.; Galopin, E.; Asensio, M. C.; Vignaud, D. Towards high quality CVD graphene growth and transfer. Carbon 2015, 89, 82–92.

90

Gao, Y. J.; Chen, X.; Zhang, J. G.; Asakura, H.; Tanaka, T.; Teramura, K.; Ma, D.; Yan, N. Popping of graphite oxide: Application in preparing metal nanoparticle catalysts. Adv. Mater. 2015, 27, 4688–4694.

91

Kalita, G.; Masahiro, M.; Uchida, H.; Wakita, K.; Umeno, M. Few layers of graphene as transparent electrode from botanical derivative camphor. Mater. Lett. 2010, 64, 2180–2183.

92

Zhang, B. B.; Song, J. L.; Yang, G. Y.; Han, B. X. Large-scale production of high-quality graphene using glucose and ferric chloride. Chem. Sci. 2014, 5, 4656–4660.

93

Ruan, G. D.; Sun, Z. Z.; Peng, Z. W.; Tour, J. M. Growth of graphene from food, insects, and waste. ACS Nano 2011, 5, 7601–7607.

94

Mouhib, M.; Antonucci, A.; Reggente, M.; Amirjani, A.; Gillen, A. J.; Boghossian, A. A.; Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials. Nano Res. 2019, 12, 2184–2199.

95
Fredrickson, J. K.; Romine, M. F.; Beliaev, A. S.; Auchtung, J. M.; Driscoll, M. E.; Gardner, T. S.; Nealson, K. H.; Osterman, A. L.; Pinchuk, G.; Reed, J. L. et al. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 2008, 6, 592–603.https://doi.org/10.1038/nrmicro1947
96

Salas, E. C.; Sun, Z. Z.; Lüttge, A.; Tour, J. M. Reduction of graphene oxide via bacterial respiration. ACS Nano 2010, 4, 4852– 4856.

97

Zhang, H. M.; Yu, X. Z.; Guo, D.; Qu, B. H.; Zhang, M.; Li, Q. H.; Wang, T. H. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 7335–7340.

98

Gurunathan, S.; Han, J. W.; Eppakayala, V.; Kim, J. H. Microbial reduction of graphene oxide by Escherichia coli: A green chemistry approach. Colloids Surf B Biointerfaces 2013, 102, 772–777.

99

Zhu, C. Z.; Guo, S. J.; Fang, Y. X.; Dong, S. J. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 2010, 4, 2429–2437.

100

Aunkor, M. T. H.; Mahbubul, I. M.; Saidur, R.; Metselaar, H. S. C. The green reduction of graphene oxide. RSC Adv. 2016, 6, 27807–27828.

101

Fernández-Merino, M. J.; Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J. M. D. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 2010, 114, 6426–6432.

102

Gao, J.; Liu, F.; Liu, Y. L.; Ma, N.; Wang, Z. Q.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 2010, 22, 2213–2218.

103

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

104

Silberberg, A. Basic principles of colloid science: D. H. Everett, Royal Society of Chemistry, London, 1988. 243 (xv) pp. J. Colloid Interface Sci. 1990, 134, 593–594.

105

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

106
Hunter, R. J. Foundations of Colloid Science; Oxford University Press: Oxford, 2001; pp 376-377.
107
Dukhin, S. S. Dielectric properties of disperse systems. Surface and colloid science. 1971, 3, 83–165.
108

Kashyap, S.; Mishra, S.; Behera, S. K. Aqueous colloidal stability of graphene oxide and chemically converted graphene. J. Nanopart. 2014, 2014, 640281.

109

Tian, S. Y.; Yang, S. W.; Huang, T.; Sun, J.; Wang, H. S.; Pu, X. P.; Tian, L. F.; He, P.; Ding, G. Q.; Xie, X. M. One-step fast electrochemical fabrication of water-dispersible graphene. Carbon 2017, 111, 617–621.

110

Unalan, I. U.; Wang, C. Y.; Trabattoni, S.; Piergiovanni, L.; Farris, S. Polysaccharide-assisted rapid exfoliation of graphite platelets into high quality water-dispersible graphene sheets. RSC Adv. 2015, 5, 26482–26490.

111

Liu, Z. Y.; Zhang, H.; Eredia, M.; Qiu, H. X.; Baaziz, W.; Ersen, O.; Ciesielski, A.; Bonn, M.; Wang, H. I.; Samorì, P. Water-dispersed high-quality graphene: A green solution for efficient energy storage applications. ACS Nano 2019, 13, 9431–9441.

112

Bepete, G.; Anglaret, E.; Ortolani, L.; Morandi, V.; Huang, K.; Pénicaud, A.; Drummond, C. Surfactant-free single-layer graphene in water. Nat. Chem. 2017, 9, 347–352.

113

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

114

Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627–632.

115

Nguyen, T. H.; Perilli, D.; Cattelan, M.; Liu, H. S.; Sedona, F.; Fox, N. A.; Di Valentin, C.; Agnoli, S. Microscopic insight into the single step growth of in-plane heterostructures between graphene and hexagonal boron nitride. Nano Res. 2019, 12, 675–682.

116

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

117

Han, T. H.; Lee, Y. B.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110.

118

Son, D. I.; Kwon, B. W.; Park, D. H.; Seo, W. S.; Yi, Y.; Angadi, B.; Lee, C. L.; Choi, W. K. Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 2012, 7, 465–471.

119

Zhang, Y.; Wang, J. S.; Qiu, J. J.; Jin, X.; Umair, M. M.; Lu, R. W.; Zhang, S. F.; Tang, B. T. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. Appl. Energy 2019, 237, 83–90.

120

Khandelwal, M.; Hur, S. H.; Chung, J. S. Tailoring the structural properties of simultaneously reduced and functionalized graphene oxide via alkanolamine(s)/alkyl alkanolamine for energy storage applications. Chem. Eng. J. 2019, 363, 120–132.

121

Ghaly, H. A.; El-Deen, A. G.; Souaya, E. R.; Allam, N. K. Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities. Electrochim. Acta 2019, 310, 58–69.

122

Fang, H.; Meng, F. T.; Yan, J.; Chen, G. Y.; Zhang, L. S.; Wu, S. D.; Zhang, S. C.; Wang, L. Z.; Zhang, Y. X. Fe3O4 hard templating to assemble highly wrinkled graphene sheets into hierarchical porous film for compact capacitive energy storage. RSC Adv. 2019, 9, 20107–20112.

123

Chen, D. Z.; Qin, S. Y.; Tsui, G. C. P.; Tang, C. Y.; Ouyang, X.; Liu, J. H.; Tang, J. N.; Zuo, J. D. Fabrication, morphology and thermal properties of octadecylamine-grafted graphene oxide-modified phase-change microcapsules for thermal energy storage. Compos. B: Eng. 2019, 157, 239–247.

124

Samantara, A. K.; Kamila, S.; Ghosh, A.; Jena, B. K. Highly ordered 1D NiCo2O4 nanorods on graphene: An efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications. Electrochim. Acta 2018, 263, 147–157.

125

Liu, X. X.; Chao, D. L.; Su, D. P.; Liu, S. K.; Chen, L.; Chi, C. X.; Lin, J. Y.; Shen, Z. X.; Zhao, J. P.; Mai, L. Q. et al. Graphene nanowires anchored to 3D graphene foam via self-assembly for high performance Li and Na ion storage. Nano Energy 2017, 37, 108–117.

126

Deshmukh, K.; Ahamed, M. B.; Deshmukh, R. R.; Pasha, S. K. K.; Sadasivuni, K. K.; Ponnamma, D.; Chidambaram, K. Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application. Eur. Polym. J. 2016, 76, 14–27.

127

Amin, M.; Putra, N.; Kosasih, E. A.; Prawiro, E.; Mahlia, T. M. I. Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl. Therm. Eng. 2017, 112, 273–280.

128

Vineesh, T. V.; Mubarak, S.; Hahm, M. G.; Prabu, V.; Alwarappan, S.; Narayanan, T. N. Controllably alloyed, low density, free-standing Ni-Co and Ni-graphene sponges for electrocatalytic water splitting. Sci. Rep. 2016, 6, 31202.

129

Zhang, B.; Sun, G.; Ding, S. P.; Asakura, H.; Zhang, J.; Sautet, P.; Yan, N. Atomically dispersed Pt1–polyoxometalate catalysts: How does metal–support interaction affect stability and hydrogenation activity. J. Am. Chem. Soc. 2019, 141, 8185–8197.

130

Sahraei, R.; Pour, Z. S.; Ghaemy, M. Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: Removal of heavy metals and dyes from water. J. Clean. Prod. 2017, 142, 2973–2984.

131

Li, J.; Zhang, D. Z.; Yang, T. T.; Yang, S.; Yang, X. D.; Zhu, H. W. Nanofibrous membrane of graphene oxide-in-polyacrylonitrile composite with low filtration resistance for the effective capture of PM2.5. J. Memb. Sci. 2018, 551, 85–92.

132

Singh, S. B.; Hussain, C. M. Nano-graphene as groundbreaking miracle material: Catalytic and commercial perspectives. ChemistrySelect 2018, 3, 9533–9544.

133

Su, Y.; Zhang, Y. F.; Qi, J. X.; Xue, T. T.; Xu, M. G.; Yang, J. Z.; Pan, Y.; Lin, Z. K. Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles. Renew. Energy 2020, 152, 94–101.

134

Lan, Y. F.; Li, X. Y.; Li, G. P.; Luo, Y. J. Sol–gel method to prepare graphene/Fe2O3 aerogel and its catalytic application for the thermal decomposition of ammonium perchlorate. J. Nanopart. Res. 2015, 17, 395.

135

Hong, W.; Li, L. J.; Xue, Y. N.; Xu, X. Y.; Wang, H.; Zhou, J. K.; Zhao, H. L.; Song, Y. H.; Liu, Y.; Gao, J. P. One-pot hydrothermal synthesis of zinc ferrite/reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. J. Colloid. Interface. Sci. 2017, 485, 175–182.

136

Zu, Y. Q.; Zhang, Y.; Xu, K. Z.; Zhao, F. Q. A graphene oxide– MgWO4 nanocomposite as an efficient catalyst for the thermal decomposition of RDX, HMX. RSC Adv. 2016, 6, 31046–31052.

137

Liu, B.; Wang, W. M.; Wang, J. J.; Zhang, Y.; Xu, K. Z.; Zhao, F. Q. Preparation and catalytic activities of CuFe2O4 nanoparticles assembled with graphene oxide for RDX thermal decomposition. J. Nanopart. Res. 2019, 21, 48.

138

Chen, J.; Xiao, P.; Gu, J. C.; Huang, Y. J.; Zhang, J. W.; Wang, W. Q.; Chen, T. Au nanoparticle-loaded PDMAEMA brush grafted graphene oxide hybrid systems for thermally smart catalysis. RSC Adv. 2014, 4, 44480–44485.

139

Ali, A. A.; Madkour, M.; Al Sagheer, F.; Zaki, M. I.; Nazeer, A. A. Low-temperature catalytic CO oxidation over non-noble, efficient chromia in reduced graphene oxide and graphene oxide nanocomposites. Catalysts 2020, 10, 105.

140

Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Xie, J. L.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 2019, 10, 4431.

141

Zhang, J. Y.; Deng, Y. C.; Cai, X. B.; Chen, Y. L.; Peng, M.; Jia, Z. M.; Jiang, Z.; Ren, P. J.; Yao, S. Y.; Xie, J. L. et al. Tin-assisted fully exposed platinum clusters stabilized on defect-rich graphene for dehydrogenation reaction. ACS Catal. 2019, 9, 5998–6005.

142

Karimi, A.; Sadighi, S. Graphene supported NiMo catalyst: A promising novel hydrocracking catalyst. Int. J. Chem. Kinet. 2020, 52, 378–386.

143

Liu, J. W.; Ma, Q. L.; Huang, Z. Q.; Liu, G. G.; Zhang, H. Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Adv. Mater. 2019, 31, 1800696.

144

Fan, X. B.; Zhang, G. L.; Zhang, F. B. Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 2015, 44, 3023–3035.

145

Ta, H. Q.; Zhao, L.; Yin, W. J.; Pohl, D.; Rellinghaus, B.; Gemming, T.; Trzebicka, B.; Palisaitis, J.; Jing, G.; Persson, P. O. Å. et al. Single Cr atom catalytic growth of graphene. Nano Res. 2018, 11, 2405–2411.

146

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1FeOx. Nat. Chem. 2011, 3, 634–641.

147

Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

148

Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

149

Niu, H. J.; Zhang, L.; Feng, J. J.; Zhang, Q. L.; Huang, H.; Wang, A. J. Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction. J. Colloid Interface Sci. 2019, 552, 744–751.

150

Yan, J.; Fan, Z. J.; Wei, T.; Qian, W. Z.; Zhang, M. L.; Wei, F. Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 2010, 48, 3825–3833.

151

Gao, Z. Y.; Liu, X.; Chang, J. L.; Wu, D. P.; Xu, F.; Zhang, L. C.; Du, W. M.; Jiang, K. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor. J. Power Sources 2017, 337, 25–35.

152

Jafri, R. I.; Rajalakshmi, N.; Ramaprabhu, S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 2010, 20, 7114–7117.

153

Ding, S. P.; Hülsey, M. J.; Pérez-Ramírez, J.; Yan, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897–2929.

154

Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

155

Hülsey, M. J.; Lim, C. W.; Yan, N. Promoting heterogeneous catalysis beyond catalyst design. Chem. Sci. 2020, 11, 1456–1468.

156

Ding, S. P.; Guo, Y. L.; Max J. H.; Zhang, B.; Asakura, H.; Liu, L. M.; Han, Y.; Gao, M.; Hasegawa, J. Y.; Qiao, B. T. et al. Electrostatic stabilization of single-atom catalysts by ionic liquids. Chem 2019, 5, 3207-3219.

157

Akira, F.; Kenichi, H. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

158

Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.

159

Li, X.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J. Graphene in photocatalysis: A review. Small 2016, 12, 6640–6696.

160

Bie, C. B.; Zhu, B. C.; Xu, F. Y.; Zhang, L. Y.; Yu, J. G. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv. Mater. 2019, 31, 1902868.

161

Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

162

Wang, L.; Li, Z.; Chen, J.; Huang, Y. N.; Zhang, H. J.; Qiu, H. D. Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite. Environ. Pollut. 2019, 249, 801–811.

163

Kuang, Y.; Shang, J.; Zhu, T. Photoactivated graphene oxide to enhance photocatalytic reduction of CO2. ACS Appl. Mater. Interfaces 2020, 12, 3580–3591.

164

Jiang, J. X.; Zhang, Q. Q.; Li, Y. H.; Li, L. Three-dimensional network graphene aerogel for enhancing adsorption and visible light photocatalysis of nitrogen-doped TiO2. Mater. Lett. 2019, 234, 298–301.

165

Dong, S. Y.; Cui, L. F.; Liu, C. Y.; Zhang, F. Y.; Li, K. Y.; Xia, L. J.; Su, X. F.; Feng, J. L.; Zhu, Y. F.; Sun, J. H. Fabrication of 3D ultra-light graphene aerogel/Bi2WO6 composite with excellent photocatalytic performance: A promising photocatalysts for water purification. J. Taiwan Inst. Chem. Eng. 2019, 97, 288–296.

166

Zhang, H. J.; Xu, P. P.; Du, G. D.; Chen, Z. W.; Oh, K.; Pan, D. Y.; Jiao, Z. A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res. 2011, 4, 274–283.

167

Yu, Q.; Lin, R.; Jiang, L. Y.; Wan, J. W.; Chen, C. Fabrication and photocatalysis of ZnO nanotubes on transparent conductive graphene-based flexible substrates. Sci. China Mater. 2018, 61, 1007–1011.

168

McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687.

169

Jia, J. B.; Kato, D.; Kurita, R.; Sato, Y.; Maruyama, K.; Suzuki, K.; Hirono, S.; Ando, T.; Niwa, O. Structure and electrochemical pro­perties of carbon films prepared by a electron cyclotron resonance sputtering method. Anal. Chem. 2007, 79, 98–105.

170

Pumera, M. ChemInform abstract: Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157.

171

Lou, Z.; Chen, S.; Wang, L. L.; Jiang, K.; Shen, G. Z. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016, 23, 7–14.

172

Huang, L.; Huang, Y.; Liang, J. J.; Wan, X. J.; Chen, Y. S. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675–684.

173

Mansouri, N.; Babadi, A. A.; Bagheri, S.; Hamid, S. B. A. H. Immobilization of glucose oxidase on 3D graphene thin film: Novel glucose bioanalytical sensing platform. Int. J. Hydrogen Energy 2017, 42, 1337–1343.

174

Shang, N. G.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stamboulis, A.; Potenza, A.; Dhesi, S. S.; Marchetto, H. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 2008, 18, 3506–3514.

175

Goryacheva, O. A.; Vostrikova, A. M.; Kokorina, A. A.; Mordovina, E. A.; Tsyupka, D. V.; Bakal, A. A.; Markin, A. V.; Shandilya, R.; Mishra, P. K.; Beloglazova, N. V. et al. Luminescent carbon nanostructures for microRNA detection. TrAC Trends Anal. Chem. 2019, 119, 115613.

176

Hébert, C.; Masvidal-Codina, E.; Suarez-Perez, A.; Calia, A. B.; Piret, G.; Garcia-Cortadella, R.; Illa, X.; Del Corro Garcia, E.; De la Cruz Sanchez, J. M.; Casals, D. V. et al. Flexible graphene solution-gated field-effect transistors: Efficient transducers for micro-electrocorticography. Adv. Funct. Mater. 2018, 28, 1703976.

177

Kanai, Y.; Ohmuro-Matsuyama, Y.; Tanioku, M.; Ushiba, S.; Ono, T.; Inoue, K.; Kitaguchi, T.; Kimura, M.; Ueda, H.; Matsumoto, K. Graphene field effect transistor-based immunosensor for ultrasensitive noncompetitive detection of small antigens. ACS Sens. 2020, 5, 24–28.

178

Shao, Y. Y.; Yin, G. P.; Gao, Y. Z. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 2007, 171, 558–566.

179

Wu, Z. S.; Wang, D. W.; Ren, W. C.; Zhao, J. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602.

180

Dong, L. F.; Gari, R. R. S.; Li, Z.; Craig, M. M.; Hou, S. F. Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 2010, 48, 781–787.

181

Li, W. Z.; Liang, C. H.; Zhou, W. J.; Qiu, J. S.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J. Phys. Chem. B 2003, 107, 6292–6299.

182

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

183

Koo, B.; Lee, S. M.; Oh, S. E.; Kim, E. J.; Hwang, Y.; Seo, D.; Kim, J. Y.; Khang, Y. H.; Lee, Y. W.; Chung, S. Y. et al. Addition of reduced graphene oxide to an activated-carbon cathode increases electrical power generation of a microbial fuel cell by enhancing cathodic performance. Electrochim. Acta 2019, 297, 613–622.

184

Luo, Z. Y.; Gong, Y. J.; Liao, X. F.; Pana, Y. J.; Zhang, H. W. Nanocomposite membranes modified by graphene-based materials for anion exchange membrane fuel cells. RSC Adv. 2016, 6, 13618–13625.

185

Papiya, F.; Das, S.; Pattanayak, P.; Kundu, P. P. The fabrication of silane modified graphene oxide supported Ni–Co bimetallic electrocatalysts: A catalytic system for superior oxygen reduction in microbial fuel cells. Int. J. Hydrogen Energy 2019, 44, 25874– 25893.

186

Pothaya, S.; Regalbuto, J. R.; Monnier, J. R.; Punyawudho, K. Preparation of Pt/graphene catalysts for polymer electrolyte membrane fuel cells by strong electrostatic adsorption technique. Int. J. Hydrogen Energy 2019, 44, 26361–26372.

187

Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

188

Yang, Y.; Xue, Y. S.; Zhang, H.; Chang, H. L. Flexible H2O2 microfluidic fuel cell using graphene/Prussian blue catalyst for high performance. Chem. Eng. J. 2019, 369, 813–817.

189

Yang, H. J.; Geng, L.; Zhang, Y. T.; Chang, G.; Zhang, Z. L.; Liu, X.; Lei, M.; He, Y. B. Graphene-templated synthesis of palladium nanoplates as novel electrocatalyst for direct methanol fuel cell. Appl. Surf. Sci. 2019, 466, 385–392.

190

Yousef, A.; El-Newehy, M. H.; Al-Deyab, S. S.; Barakat, N. A. M. Facile synthesis of Ni-decorated multi-layers graphene sheets as effective anode for direct urea fuel cells. Arab. J. Chem. 2017, 10, 811–822.

191

Cheng, Y.; He, S.; Lu, S. F.; Veder, J. P.; Johannessen, B.; Thomsen, L.; Saunders, M.; Becker, T.; De Marco, R.; Li, Q. F. et al. Iron single atoms on graphene as nonprecious metal catalysts for high-temperature polymer electrolyte membrane fuel cells. Adv. Sci. 2019, 6, 1802066.

192

Hou, J. B.; Shao, Y. Y.; Ellis, M. W.; Moore, R. B.; Yi, B. L. Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 2011, 13, 15384–15402.

193

Tan, Y. B.; Lee, J. M. Graphene for supercapacitor applications. J. Mater. Chem. A 2013, 1, 14814–14843.

194

Shi, W. H.; Zhu, J. X.; Sim, D. H.; Tay, Y. Y.; Lu, Z. Y.; Zhang, X. J.; Sharma, Y.; Srinivasan, M.; Zhang, H.; Hng, H. H. et al. Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 2011, 21, 3422–3427.

195

Ma, Y. Y.; Yuan, W. Y.; Bai, Y. H.; Wu, H.; Cheng, L. F. The toughening design of pseudocapacitive materials via graphene quantum dots: Towards enhanced cycling stability for supercapacitors. Carbon 2019, 154, 292–300.

196

Ramadan, A.; Anas, M.; Ebrahim, S.; Soliman, M.; Abou-Aly A. Effect of co-doped graphene quantum dots to polyaniline ratio on performance of supercapacitor. J. Mater. Sci. : Mater. Electron. 2020, 31, 7247–7259.

197

Lei, Z. B.; Zhang, J. T.; Zhao, X. S. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J. Mater. Chem. 2012, 22, 153–160.

198

Zhang, W. Y.; Yang, Y. N.; Xia, R. Q.; Li, Y. C.; Zhao, J. Q.; Lin, L.; Cao, J. M.; Wang, Q. H.; Liu, Y.; Guo, H. W. Graphene-quantum-dots-induced MnO2 with needle-like nanostructure grown on carbonized wood as advanced electrode for supercapacitors. Carbon 2020, 162, 114–123.

199

Yu, Z. N.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702–730.

200

Moitra, D.; Anand, C.; Ghosh, B. K.; Chandel, M.; Ghosh, N. N. One-dimensional BiFeO3 nanowire-reduced graphene oxide nanocomposite as excellent supercapacitor electrode material. ACS Appl. Energy Mater. 2018, 1, 464–474.

201

Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

202

Zhang, G. X.; Xiao, X.; Li, B.; Gu, P.; Xue, H. G.; Pang, H. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J. Mater. Chem. A 2017, 5, 8155–8186.

203

Lei, Z. B.; Shi, F. H.; Lu, L. Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mater. Interfaces 2012, 4, 1058–1064.

204

Li, Z. M.; An, Y. F.; Hu, Z. G.; An, N.; Zhang, Y. D.; Guo, B. S.; Zhang, Z. Y.; Yang, Y. Y.; Wu, H. Y. Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. J. Mater. Chem. A 2016, 4, 10618–10626.

205

Tu, C. C.; Lin, L. Y.; Xiao, B. C.; Chen, Y. S. Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets. J. Power Sources 2016, 320, 78–85.

206

Lee, J. W.; Hall, A. S.; Kim, J. D.; Mallouk, T. E. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 2012, 24, 1158–1164.

207

Yang, J.; Zhang, Y.; Sun, C. C.; Liu, H. Z.; Li, L. Q.; Si, W. L.; Huang, W.; Yan Q. Y.; Dong, X. C. Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Res. 2016, 9, 612–621.

208

Xia, X. H.; Tu, J. P.; Mai, Y. J.; Chen, R.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Graphene sheet/porous NiO hybrid film for super­capacitor applications. Chemistry 2011, 17, 10898–10905.

209

Chen, Z.; Lu, J. F.; Ai, Y. J.; Ji, Y. F.; Adschiri, T.; Wan, L. J. Ruthenium/graphene-like layered carbon composite as an efficient hydrogen evolution reaction electrocatalyst. ACS Appl. Mater. Interfaces 2016, 8, 35132–35137.

210

Xiang, C. C.; Li, M.; Zhi, M. J.; Manivannan, A.; Wu, N. Q. Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: Shape and coupling effects. J. Mater. Chem. 2012, 22, 19161–19167.

211

Zhu, Q. X.; Qin, F. F.; Lu, J. F.; Zhu, Z.; Nan, H. Y.; Shi, Z. L.; Ni, Z. H.; Xu, C. X. Synergistic graphene/aluminum surface plasmon coupling for zinc oxide lasing improvement. Nano Res. 2017, 10, 1996–2004.

212

Qiu, L.; Yang, X. W.; Gou, X. L.; Yang, W. R.; Ma, Z. F.; Wallace, G. G.; Li, D. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem. —Eur. J. 2010, 16, 10653–10658.

213

Yang, X. W.; Zhu, J. W.; Qiu, L.; Li, D. Graphene assembly: Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors (Adv. Mater. 25/2011). Adv. Mater. 2011, 23, 2771.

214

Yang, W. L.; Gao, Z.; Wang, J.; Wang, B.; Liu, Q.; Li, Z. S.; Mann, T.; Yang, P. P.; Zhang, M. L.; Liu, L. H. Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance as supercapacitor electrode. Electrochim. Acta 2012, 69, 112–119.

215

Wu, Y. P.; Zhu, J. H.; Huang, L. A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment. Carbon 2019, 143, 610–640.

216

Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865.

217

Shah, S. A.; Kulhanek, D.; Sun, W. M.; Zhao, X. F.; Yu, S.; Parviz, D.; Lutkenhaus, J. L.; Green, M. J. Aramid nanofiber-reinforced three-dimensional graphene hydrogels for supercapacitor electrodes. J. Colloid Interface Sci. 2020, 560, 581–588.

218

Zhou, R.; Han, C. J.; Wang, X. M. Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. J. Power Sources 2017, 352, 99–110.

219

Li, S. M.; Yang, K.; Ya, P. W.; Ma, K. R.; Zhang, Z.; Huang, Q. Three-dimensional porous carbon/Co3O4 composites derived from graphene/Co-MOF for high performance supercapacitor electrodes. Appl. Surf. Sci. 2020, 503, 144090.

220

Ramadoss, A.; Yoon, K. Y.; Kwak, M. J.; Kim, S. I.; Ryu, S. T.; Jang, J. H. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J. Power Sources 2017, 337, 159–165.

221

He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182.

222

Chen, P.; Yang, J. J.; Li, S. S.; Wang, Z.; Xiao, T. Y.; Qian, Y. H.; Yu, S. H. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2013, 2, 249–256.

223

Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 2008, 47, 373–376.

224

Chen, Y.; Wang, L. Z.; Shi, J. L. Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today 2016, 11, 292–308.

225

Ghawanmeh, A. A.; Ali, G. A. M.; Algarni, H.; Sarkar, S. M.; Cong, K. F. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res. 2019, 12, 973–990.

226

Kiew, S. F.; Ho, Y. T.; Kiew, L. V.; Kah, J. C. Y.; Lee, H. B.; Imae, T.; Chung, L. Y. Preparation and characterization of an amylase-triggered dextrin-linked graphene oxide anticancer drug nanocarrier and its vascular permeability. Int. J. Pharm. 2017, 534, 297–307.

227

Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

228

Shang, W. H.; Zhang, X. Y.; Zhang, M.; Fan, Z. T.; Sun, Y.; Han, M.; Fan, L. Z. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale 2014, 6, 5799–5806.

229

Xie, M.; Zhang, F.; Liu, L. J.; Zhang, Y. N.; Li, Y. P.; Li, H. M.; Xie, J. M. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl. Surf. Sci. 2018, 440, 853–860.

230

Gai, L. X.; Wang, W. Q.; Wu, X.; Su, X. J.; Yang, F. C. NIR absorbing reduced graphene oxide for photothermal radiotherapy for treatment of esophageal cancer. J. Photochem. Photobiol. B 2019, 194, 188–193.

231

Geng, H.; Qiu, J. J.; Zhu, H. Q.; Liu, X. Y. Achieving stem cell imaging and osteogenic differentiation by using nitrogen doped graphene quantum dots. J. Mater. Sci. 2018, 29, 85.

232

Guo, L. L.; Shi, H. L.; Wu, H. X.; Zhang, Y. X.; Wang, X.; Wu, D. M.; Lu A.; Yang, S. P. Prostate cancer targeted multifunctionalized graphene oxide for magnetic resonance imaging and drug delivery. Carbon 2016, 107, 87–99.

233

Lima-Sousa, R.; Melo-Diogo, D.; Alves, C. G.; Costa, E. C.; Ferreira, P.; Louro, R. O.; Correia, I. J. Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy. Carbohydr. Polym. 2018, 200, 93–99.

234

Wang, Y.; Zhang, P.; Liu, C. F.; Zhan, L.; Lia, Y. F.; Huang, C. Z. Green and easy synthesis of biocompatible graphene for use as an anticoagulant. RSC Adv. 2012, 2, 2322–2328.

235

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

236

Muñoz, J.; Riba-Moliner, M.; Brennan, L. J.; Gun'ko, Y. K.; Céspedes, F.; González-Campo, A.; Baeza, M. Amperometric thyroxine sensor using a nanocomposite based on graphene modified with gold nanoparticles carrying a thiolated β-cyclodextrin. Microchim. Acta 2016, 183, 1579–1589.

237

Yu, Y.; Chen, X.; Yao, Q. F.; Yu, Y.; Yan, N.; Xie, J. P. Scalable and precise synthesis of thiolated Au10–12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem. Mater. 2013, 25, 946–952.

238

Chen, L. Q.; Hu, P. P.; Zhang, L.; Huang, S. Z.; Luo, L. F.; Huang, C. Z. Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Sci. China Chem. 2012, 55, 2209–2216.

Nano Research
Pages 3724-3743
Cite this article:
Yu Q, Jiang J, Jiang L, et al. Advances in green synthesis and applications of graphene. Nano Research, 2021, 14(11): 3724-3743. https://doi.org/10.1007/s12274-021-3336-9
Topics:

976

Views

30

Crossref

26

Web of Science

31

Scopus

5

CSCD

Altmetrics

Received: 17 December 2020
Revised: 15 January 2021
Accepted: 18 January 2021
Published: 10 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return