AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Robust perfluorinated porous organic networks: Succinct synthetic strategy and application in chlorofluorocarbons adsorption

Yali Luo1Zhenzhen Yang3( )Xian Suo2Hao Chen2Tao Wang2Ziqian Wang1Yunfei Liu1Yinong Lyu1Ilja Popovs3Sheng Dai2,3( )
College of Materials Science and Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
Department of Chemistry, The University of Tennessee, Knoxville, TN 37996, USA
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Show Author Information

Graphical Abstract

Abstract

Fluorinated porous organic networks (F-PONs) have demonstrated unique properties and applications, but approaches capable of affording F-PONs with high fluorine content and robust nanoporous architecture under metal-free and easy handling conditions are still rarely reported. Herein, using polydivinylbenzene (PDVB) as an easily available precursor, a novel and straightforward approach was developed to afford F-PONs via a dehydrative Friedel-Crafts reaction using perfluorinated benzylic alcohols as the cross-linking agent promoted by Brønsted acid (trifluoromethanesulfonic acid). The afforded material (F-PDVB) featured high fluorine content (22 at.%), large surface area (771 m2·g-1), and good chemical/thermal stability, rendering them as promising candidates for the adsorption of CO2, hydrocarbons, fluorocarbons, and chlorofluorocarbons, with weight capacities up to 520 wt.% being achieved. This simple methodology can be extended to fabricate fluorinated hyper-crosslinked polymers (F-HCPs) from rigid aromatic monomers. The progress made in this work will open new opportunities to further expand the involvement of fluorinated materials in large scale applications.

Electronic Supplementary Material

Download File(s)
12274_2021_3339_MOESM1_ESM.pdf (2 MB)

References

[1]
Noro, S. I.; Nakamura, T. Fluorine-functionalized metal-organic frameworks and porous coordination polymers. NPG Asia Mater. 2017, 9, e433.
[2]
Chen, H.; Yang, Z. Z.; Do-Thanh, C. L.; Dai, S. What fluorine can do in CO2 chemistry: Applications from homogeneous to heterogeneous systems. ChemSusChem 2020, 13, 6182-6200.
[3]
Yang, C.; Kaipa, U.; Mather, Q. Z.; Wang, X. P.; Nesterov, V.; Venero, A. F.; Omary, M. A. Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage. J. Am. Chem. Soc. 2011, 133, 18094-18097.
[4]
D’Amato, R.; Donnadio, A.; Carta, M.; Sangregorio, C.; Tiana, D.; Vivani, R.; Taddei, M.; Costantino, F. Water-based synthesis and enhanced CO2 capture performance of perfluorinated cerium-based metal-organic frameworks with UiO-66 and MIL-140 topology. ACS Sustain. Chem. Eng. 2019, 7, 394-402.
[5]
Ji, P. F.; Drake, T.; Murakami, A.; Oliveres, P.; Skone, J. H.; Lin, W. B. Tuning lewis acidity of metal-organic frameworks via perfluorination of bridging ligands: Spectroscopic, theoretical, and catalytic studies. J. Am. Chem. Soc. 2018, 140, 10553-10561.
[6]
Chen, X.; Addicoat, M.; Irle, S.; Nagai, A.; Jiang, D. L. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J. Am. Chem. Soc. 2013, 135, 546-549.
[7]
Braunecker, W. A.; Hurst, K. E.; Ray, K. G.; Owczarczyk, Z. R.; Martinez, M. B.; Leick, N.; Keuhlen, A.; Sellinger, A.; Johnson, J. C. Phenyl/perfluorophenyl stacking interactions enhance structural order in two-dimensional covalent organic frameworks. Cryst. Growth Des. 2018, 18, 4160-4166.
[8]
Alahakoon, S. B.; McCandless, G. T.; Karunathilake, A. A. K.; Thompson, C. M.; Smaldone, R. A. Enhanced structural organization in covalent organic frameworks through fluorination. Chem.—Eur. J. 2017, 23, 4255-4259.
[9]
Liao, Q. B.; Ke, C.; Huang, X.; Zhang, G. Y.; Zhang, Q.; Zhang, Z. W.; Zhang, Y. Y.; Liu, Y. Z.; Ning, F. Y.; Xi, K. Catalyst-free and efficient fabrication of highly crystalline fluorinated covalent organic frameworks for selective guest adsorption. J. Mater. Chem. A 2019, 7, 18959-18970.
[10]
Wang, D. G.; Li, N.; Hu, Y. M.; Wan, S.; Song, M.; Yu, G. P.; Jin, Y. H.; Wei, W. F.; Han, K.; Kuang, G. C. et al. Highly fluoro-substituted covalent organic framework and its application in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 42233-42240.
[11]
Li, G. Y.; Zhang, B.; Wang, Z. G. Facile synthesis of fluorinated microporous polyaminals for adsorption of carbon dioxide and selectivities over nitrogen and methane. Macromolecules 2016, 49, 2575-2581.
[12]
Comotti, A.; Castiglioni, F.; Bracco, S.; Perego, J.; Pedrini, A.; Negroni, M.; Sozzani, P. Fluorinated porous organic frameworks for improved CO2 and CH4 capture. Chem. Commun. 2019, 55, 8999-9002.
[13]
Ge, M. T.; Liu, H. Z. Fluorine-containing silsesquioxane-based hybrid porous polymers mediated by bases and their use in water remediation. Chem.—Eur. J. 2018, 24, 2224-2231.
[14]
Kim, S.; Thirion, D.; Nguyen, T. S.; Kim, B.; Dogan, N. A.; Yavuz, C. T. Sustainable synthesis of superhydrophobic perfluorinated nanoporous networks for small molecule separation. Chem. Mater. 2019, 31, 5206-5213.
[15]
Thirion, D.; Kwon, Y.; Rozyyev, V.; Byun, J.; Yavuz, C. T. Synthesis and easy functionalization of highly porous networks through exchangeable fluorines for target specific applications. Chem. Mater. 2016, 28, 5592-5595.
[16]
Cao, Q.; Yin, Q.; Chen, Q.; Dong, Z. B.; Han, B. H. Fluorinated porous conjugated polyporphyrins through direct C-H arylation polycondensation: Preparation, porosity, and use as heterogeneous catalysts for baeyer-villiger oxidation. Chem.—Eur. J. 2017, 23, 9831-9837.
[17]
Liu, D. P.; Chen, Q.; Zhao, Y. C.; Zhang, L. M.; Qi, A. D.; Han, B. H. Fluorinated porous organic polymers via direct C-H arylation polycondensation. ACS Macro Lett. 2013, 2, 522-526.
[18]
Lu, W. G.; Wei, Z. W.; Yuan, D. Q.; Tian, J.; Fordham, S.; Zhou, H. C. Rational design and synthesis of porous polymer networks: Toward high surface area. Chem. Mater. 2014, 26, 4589-4597.
[19]
Luo, Y. L.; Li, B. Y.; Wang, W.; Wu, K. B.; Tan, B. E. Hypercrosslinked aromatic heterocyclic microporous polymers: A new class of highly selective CO2 capturing materials. Adv. Mater. 2012, 24, 5703-5707.
[20]
Huang, J.; Turner, S. R. Hypercrosslinked polymers: A review. Polym. Rev. 2018, 58, 1-41.
[21]
Tan, L. X.; Tan, B. E. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem. Soc. Rev. 2017, 46, 3322-3356.
[22]
Liu, Y. C.; Wang, S.; Meng, X. Y.; Ye, Y.; Song, X. W.; Liang, Z. Q.; Zhao, Y. L. Molecular expansion for constructing porous organic polymers with high surface areas and well-defined nanopores. Angew. Chem., Int. Ed. 2020, 59, 19487-19493.
[23]
Yao, S. W.; Yang, X.; Yu, M.; Zhang, Y. H.; Jiang, J. X. High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO2 capture. J. Mater. Chem. A 2014, 2, 8054-8059.
[24]
Bhunia, S.; Banerjee, B.; Bhaumik, A. A new hypercrosslinked supermicroporous polymer, with scope for sulfonation, and its catalytic potential for the efficient synthesis of biodiesel at room temperature. Chem. Commun. 2015, 51, 5020-5023.
[25]
Liu, G. L.; Wang, Y. X.; Shen, C. J.; Ju, Z. F.; Yuan, D. Q. A facile synthesis of microporous organic polymers for efficient gas storage and separation. J. Mater. Chem. A 2015, 3, 3051-3058.
[26]
Chen, D. Y.; Gu, S.; Fu, Y.; Zhu, Y. L.; Liu, C.; Li, G. H.; Yu, G. P.; Pan, C. Y. Tunable porosity of nanoporous organic polymers with hierarchical pores for enhanced CO2 capture. Polym. Chem. 2016, 7, 3416-3422.
[27]
Li, B. Y.; Guan, Z. H.; Yang, X. J.; Wang, W. D.; Wang, W.; Hussain, I.; Song, K. P.; Tan, B. E.; Li, T. Multifunctional microporous organic polymers. J. Mater. Chem. A 2014, 2, 11930-11939.
[28]
Li, L. N.; Ren, H.; Yuan, Y.; Yu, G. L.; Zhu, G. S. Construction and adsorption properties of porous aromatic frameworks via AlCl3-triggered coupling polymerization. J. Mater. Chem. A 2014, 2, 11091-11098.
[29]
Xiong, S. H.; Fu, X.; Xiang, L.; Yu, G. P.; Guan, J. G.; Wang, Z. G.; Du, Y.; Xiong, X.; Pan, C. Y. Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and selective CO2 uptake. Polym. Chem. 2014, 5, 3424-3431.
[30]
Zhang, Y. L.; Wang, J. N.; He, Y.; He, Y. Y.; Xu, B. B.; Wei, S.; Xiao, F. S. Solvothermal synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces. Langmuir 2011, 27, 12585-12590.
[31]
He, J. X.; Zhao, G. H.; Mu, P.; Wei, H. J.; Su, Y. N.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Scalable fabrication of monolithic porous foam based on cross-linked aromatic polymers for efficient solar steam generation. Sol. Energy Mater. Sol. Cells 2019, 201, 110111.
[32]
Krishnakumar, V.; Mathammal, R. A joint FTIR, FT-Raman and scaled quantum mechanical study of 1,3-dibromo-2,4,5,6-tetra-fluoro benzene (DTB) and 1,2,3,4,5-pentafluoro benzene (PB). J. Raman Spectrosc. 2009, 40, 1104-1109.
[33]
Barpaga, D.; Nguyen, V. T.; Medasani, B. K.; Chatterjee, S.; McGrail, B. P.; Motkuri, R. K.; Dang, L. X. Insight into fluorocarbon adsorption in metal-organic frameworks via experiments and molecular simulations. Sci. Rep. 2019, 9, 10289.
[34]
Chen, T. H.; Popov, I.; Kaveevivitchai, W.; Chuang, Y. C.; Chen, Y. S.; Jacobson, A. J.; Miljanić, O. Š. Mesoporous fluorinated metal-organic frameworks with exceptional adsorption of fluorocarbons and CFCs. Angew. Chem., Int. Ed. 2015, 54, 13902-13906.
[35]
Yang, Z. Z.; Wang, S.; Zhang, Z. H.; Guo, W.; Jie, K. C.; Hashim, M. I.; Miljanić, O. Š.; Jiang, D. E.; Popovs, I.; Dai, S. Influence of fluorination on CO2 adsorption in materials derived from fluorinated covalent triazine framework precursors. J. Mater. Chem. A 2019, 7, 17277-17282.
[36]
Motkuri, R. K.; Annapureddy, H. V. R.; Vijaykumar, M.; Schaef, H. T.; Martin, P. F.; McGrail, B. P.; Dang, L. X.; Krishna, R.; Thallapally, P. K. Fluorocarbon adsorption in hierarchical porous frameworks. Nat. Commun. 2014, 5, 4368.
Nano Research
Pages 3282-3287
Cite this article:
Luo Y, Yang Z, Suo X, et al. Robust perfluorinated porous organic networks: Succinct synthetic strategy and application in chlorofluorocarbons adsorption. Nano Research, 2021, 14(9): 3282-3287. https://doi.org/10.1007/s12274-021-3339-6
Topics:
Part of a topical collection:

896

Views

10

Crossref

11

Web of Science

11

Scopus

3

CSCD

Altmetrics

Received: 25 November 2020
Revised: 11 January 2021
Accepted: 18 January 2021
Published: 06 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return