AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Surface polarization enables high charge separation in TiO2 nanorod photoanode

Wei MaKeke HuangXiaofeng WuMeng WangShouhua Feng( )
State Key Laboratory of Inorganic Synthesis and Preparative ChemistryNMAC International Joint LaboratoryCollege of Chemistry Jilin UniversityChangchun 130012 China
Show Author Information

Graphical Abstract

Abstract

Poor charge separation efficiency of semiconductors often stands in the way of photoelectrochemical (PEC) water splitting realization. In this report, a surface polarized TiO2 photoanode is obtained via –OH moiety decoration, which achieves a fundamentally improved charge separation efficiency of about 94% at 1.23 VRHE. Detailed data shows that these hydroxyls with electric dipoles polarize the surface, inducing substantial electric field in the surface region, and elevating band edges so as to form a homojunction within TiO2. Such serves as the direct driving force for the photogenerated charge separation and migration. Moreover, these hydroxyls also facilitate water oxidation kinetics. Without typical doping or cocatalyst, surface polarized TiO2 photoanode delivers a considerably increased photocurrent density of about 1.41 mA·cm−2 at 1.23 VRHE (AM 1.5 G) and a cathodic shift on onset potential over 200 mV. This report highlights new opportunities to modulate charge separation by surface polarization for the construction of robust photoanodes.

Electronic Supplementary Material

Download File(s)
12274_2021_3340_MOESM1_ESM.pdf (2.5 MB)

References

1

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

2

Yang, Y.; Niu, S. W.; Han, D. D.; Liu, T. Y.; Wang, G. M.; Li, Y. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 2017, 7, 1700555.

3

Yao, T. T.; An, X. R.; Han, H. X.; Chen, J. Q.; Li, C. Photoelectrocatalytic materials for solar water splitting. Adv. Energy Mater. 2018, 8, 1800210.

4

Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

5

Zhang, Y. P.; Li, Y.; Ni, D. Q.; Chen, Z. W.; Wang, X.; Bu, Y. Y.; Ao, J. P. Improvement of BiVO4 photoanode performance during water photo-oxidation using Rh-doped SrTiO3 perovskite as a co-catalyst. Adv. Funct. Mater. 2019, 29, 1902101.

6

Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

7

Fu, C. F.; Wu, X. J.; Yang, J. L. Material design for photocatalytic water splitting from a theoretical perspective. Adv. Mater. 2018, 30, 1802106.

8

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

9

Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ. Sci. 2015, 8, 731–759.

10

Thalluri, S. M.; Bai, L. C.; Lv, C. C.; Huang, Z. P.; Hu, X. L.; Liu, L. F. Strategies for semiconductor/electrocatalyst coupling toward solar-driven water splitting. Adv. Sci. 2020, 7, 1902102.

11

Liu, H. Y.; Cody, C. C.; Jacob-Dolan, J. A.; Crabtree, R. H.; Brudvig, G. W. Surface-attached molecular catalysts on visible-light-absorbing semiconductors: Opportunities and challenges for a stable hybrid water-splitting photoanode. ACS Energy Lett. 2020, 5, 3195–3202.

12

Zhang, S. C.; Liu, Z. F.; Chen, D.; Yan, W. G. An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx cocatalyst for efficient photoelectrochemical water oxidation. Appl. Catal., B 2020, 277, 119197.

13

Hu, Y. X.; Pan, Y. Y.; Wang, Z. L.; Lin, T. G.; Gao, Y. Y.; Luo, B.; Hu, H.; Fan, F. T.; Liu, G.; Wang, L. Z. Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer. Nat. Commun. 2020, 11, 2129.

14

Wang, Z. L.; Mao, X.; Chen, P.; Xiao, M.; Monny, S. A.; Wang, S. C.; Konarova, M.; Du, A. J.; Wang, L. Z. Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes. Angew. Chem., Int. Ed. 2019, 58, 1030–1034.

15

Zhang, Y. C.; Jiang, S. Q.; Song, W. J.; Zhou, P.; Ji, H. W.; Ma, W. H.; Hao, W. C.; Chen, C. C.; Zhao, J. C. Nonmetal P-doped hematite photoanode with enhanced electron mobility and high water oxidation activity. Energy Environ. Sci. 2015, 8, 1231–1236.

16

Cao, D. P.; Luo, W. J.; Feng, J. Y.; Zhao, X.; Li, Z. S.; Zou, Z. G. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction. Energy Environ. Sci. 2014, 7, 752–759.

17

Zhang, Z. J.; Karimata, I.; Nagashima, H.; Muto, S.; Ohara, K.; Sugimoto, K.; Tachikawa, T. Interfacial oxygen vacancies yielding long-lived holes in hematite mesocrystal-based photoanodes. Nat. Commun. 2019, 10, 4832.

18

Kay, A.; Cesar, I.; Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 2006, 128, 15714– 15721.

19

Cho, I. S.; Chen, Z. B.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. L. Branched TiO2 nanorods for photo­electrochemical hydrogen production. Nano Lett. 2011, 11, 4978–4984.

20

Chang, X. X.; Wang, T.; Zhang, P.; Zhang, J. J.; Li, A.; Gong, J. L. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 2015, 137, 8356–8359.

21

Gao, C. M.; Wei, T.; Zhang, Y. Y.; Song, X. H.; Huan, Y.; Liu, H.; Zhao, M. W.; Yu, J. H.; Chen, X. D. A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high- performance hydrogen evolution. Adv. Mater. 2019, 31, 1806596.

22

Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 2011, 4, 1781–1787.

23

Li, M.; Yu, S. X.; Huang, H. W.; Li, X. W.; Feng, Y. B.; Wang, C.; Wang, Y. G.; Ma, T. Y.; Guo, L.; Zhang, Y. H. Unprecedented eighteen- faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox. Angew. Chem., Int. Ed. 2019, 58, 9517–9521.

24

Chen, F.; Huang, H. W.; Guo, L.; Zhang, Y. H.; Ma, T. Y. The role of polarization in photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 10061–10073.

25

Li, Z.; Zhang, L.; Liu, Y.; Shao, C. Y.; Gao, Y. Y.; Fan, F. T.; Wang, J. X.; Li, J. M.; Yan, J. C.; Li, R. G. et al. Surface-polarity-induced spatial charge separation boosts photocatalytic overall water splitting on GaN nanorod arrays. Angew. Chem., Int. Ed. 2020, 59, 935–942.

26
Hu, C.; Tu, S. C.; Tian, N.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. External fields enhanced photocatalysis. Angew. Chem., Int. Ed. in press, DOI: 10.1002/anie.202009518.https://doi.org/10.1002/anie.202009518
27

Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

28

Wu, F.; Yu, Y. H.; Yang, H.; German, L. N.; Li, Z. Q.; Chen, J. G.; Yang, W. G.; Huang, L.; Shi, W. M.; Wang, L. J. et al. Simultaneous enhancement of charge separation and hole transportation in a TiO2-SrTiO3 core-shell nanowire photoelectrochemical system. Adv. Mater. 2017, 29, 1701432.

29

Liu, Z. R.; Wang, L. W.; Yu, X.; Zhang, J.; Yang, R. Q.; Zhang, X. D.; Ji, Y. C.; Wu, M. Q.; Deng, L.; Li L. L. et al. Piezoelectric-effect- enhanced full-spectrum photoelectrocatalysis in p-n heterojunction. Adv. Funct. Mater. 2019, 29, 1807279.

30

Zhang, B. B.; Chou, L. G.; Bi, Y. P. Tuning surface electronegativity of BiVO4 photoanodes toward high-performance water splitting. Appl. Catal. B 2020, 262, 118267.

31

Bae, S.; Kim, D.; Kim, H.; Gu, M. S.; Ryu, J.; Kim, B. S. Modulating charge separation efficiency of water oxidation photoanodes with polyelectrolyte-assembled interfacial dipole layers. Adv. Funct. Mater. 2020, 30, 1908492.

32

Hao, L.; Kang, L.; Huang, H. W.; Ye, L. Q.; Han, K. L.; Yang, S. Q.; Yu, H. J.; Batmunkh, M.; Zhang, Y. H.; Ma, T. Y. Surface-halogenation- induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 2019, 31, 1900546.

33

Zhang, D. Y.; Yang, M. N.; Dong, S. Hydroxylation of the rutile TiO2(110) surface enhancing its reducing power for photocatalysis. J. Phys. Chem. C 2015, 119, 1451–1456.

34

Zhang, R.; Bi, L. L.; Wang, D. J.; Lin, Y. H.; Zou, X. X.; Xie, T. F. An effective method to understand photo-generated charge transfer processes of Z-scheme Ti/α-Fe2O3/g-C3N4 photocatalysts for hydrogen evolution. Catal. Commun. 2020, 142, 106028.

35

Schipper, D. E.; Zhao, Z. H.; Leitner, A. P.; Xie, L. X.; Qin, F.; Alam, M. K.; Chen, S.; Wang, D. Z.; Ren, Z. F.; Wang, Z. M. et al. A TiO2/FeMnP core/shell nanorod array photoanode for efficient photoelectrochemical oxygen evolution. ACS Nano 2017, 11, 4051– 4059.

36

Yoon, J. W.; Kim, D. H.; Kim, J. H.; Jang, H. W.; Lee, J. H. NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water splitting. Appl. Catal. B 2019, 244, 511–518.

37

Liu, G. J.; Ye, S.; Yan, P. L.; Xiong, F. Q.; Fu, P.; Wang, Z. L.; Chen, Z.; Shi, J. Y.; Li, C. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ. Sci. 2016, 9, 1327–1334.

38

Meng, Q. J.; Zhang, B. B.; Fan, L. Z.; Liu, H. D.; Valvo, M.; Edström, K.; Cuartero, M.; de Marco, R.; Crespo, G. A.; Sun, L. C. Efficient BiVO4 photoanodes by postsynthetic treatment: remarkable improvements in photoelectrochemical performance from facile borate modification. Angew. Chem., Int. Ed. 2019, 58, 19027–19033.

39

Yin, Z. Y.; Chen, X. T.; Wang, C.; Guo, Z. J.; Wu, X. L.; Zhao, Z. Y.; Yao, Y. F.; Luo, W. J.; Zou, Z. G. Mildly regulated intrinsic faradaic layer at the oxide/water interface for improved photoelectrochemical performance. Chem. Sci. 2020, 11, 6297–6304.

40

Dai, X. C.; Huang, M. H.; Li, Y. B.; Li, T.; Zhang, B. B.; He, Y. H.; Xiao, G. C.; Xiao, F. X. Regulating spatial charge transfer over intrinsically ultrathin-carbon-encapsulated photoanodes toward solar water splitting. J. Mater. Chem. A 2019, 7, 2741–2753.

41

Li, C. C.; Wang, T.; Zhao, Z. J.; Yang, W. M.; Li, J. F.; Li, A.; Yang, Z. L.; Ozin, G. A.; Gong, J. L. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem., Int. Ed. 2018, 57, 5278–5282.

42

Zhu, H.; Zhao, M. M.; Zhou, J. K.; Li, W. C.; Wang, H. Y.; Xu, Z.; Lu, L.; Pei, L.; Shi, Z.; Yan, S. C. et al. Surface states as electron transfer pathway enhanced charge separation in TiO2 nanotube water splitting photoanodes. Appl. Catal. B 2018, 234, 100–108.

43

Kou, T. Y.; Wang, S. W.; Hauser, J. L.; Chen, M. P.; Oliver, S. R. J.; Ye, Y. F.; Guo, J. H.; Li, Y. Ni foam-supported Fe-doped β-Ni(OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction. ACS Energy Lett. 2019, 4, 622–628.

44

She, H. D.; Yue, P. F.; Ma, X. Y.; Huang, J. W.; Wang, L.; Wang, Q. Z. Fabrication of BiVO4 photoanode cocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation. Appl. Catal. B 2020, 263, 118280.

45

Li, M. Y.; Liu, T. Y.; Yang, Y.; Qiu, W. T.; Liang, C. L.; Tong, Y. X.; Li, Y. Zipping up NiFe(OH)x-encapsulated hematite to achieve an ultralow turn-on potential for water oxidation. ACS Energy Lett. 2019, 4, 1983–1990.

46

Zhou, T. S.; Chen, S.; Wang, J. C.; Zhang, Y.; Li, J. H.; Bai, J.; Zhou, B. X. Dramatically enhanced solar-driven water splitting of BiVO4 photoanode via strengthening hole transfer and light harvesting by co-modification of CQDs and ultrathin β-FeOOH layers. Chem. Eng. J. 2021, 403, 126350.

47

Dotan, H.; Sivula, K.; Grätzel, M.; Rothschild, A.; Warren, S. C. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 2011, 4, 958–964.

48

Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual- layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

49

Zhang, H. W.; Ma, L.; Ming, J. T.; Liu, B. Q.; Zhao, Y. B.; Hou, Y. D.; Ding, Z. X.; Xu, C.; Zhang, Z. Z.; Long, J. L. Amorphous Ta2OxNy-enwrapped TiO2 rutile nanorods for enhanced solar photoelectrochemical water splitting. Appl. Catal. B 2019, 243, 481–489.

50

Zhang, X.; Guo, H. L.; Dong, G. J.; Zhang, Y. J.; Lu, G. X.; Bi, Y. P. Homostructural Ta3N5 nanotube/nanoparticle photoanodes for highly efficient solar-driven water splitting. Appl. Catal. B 2020, 277, 119217.

51

Zhang, J. F.; Zhou, P.; Liu, J. J.; Yu, J. G. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386.

52

Wang, S. B.; Han, X.; Zhang, Y. H.; Tian, N.; Ma, T. Y.; Huang, H. W. Inside-and-out semiconductor engineering for CO2 photoreduction: From recent advances to new trends. Small Struct. 2021, 2, 2000061.

53

Zhang, B.; Zhao, T. J.; Feng, W. J.; Liu, Y. X.; Wang, H. H.; Su, H.; Lv, L. B.; Li, X. H.; Chen, J. S. Polarized few-layer g-C3N4 as metal- free electrocatalyst for highly efficient reduction of CO2. Nano Res. 2018, 11, 2450–2459.

Nano Research
Pages 4056-4062
Cite this article:
Ma W, Huang K, Wu X, et al. Surface polarization enables high charge separation in TiO2 nanorod photoanode. Nano Research, 2021, 14(11): 4056-4062. https://doi.org/10.1007/s12274-021-3340-0
Topics:

800

Views

26

Crossref

21

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 17 December 2020
Revised: 15 January 2021
Accepted: 18 January 2021
Published: 28 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return