AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Imaging the influence of oxides on the electrostatic potential of photovoltaic InP nanowires

Lukas Hrachowina1,2Xianshao Zou1,3Yang Chen1,2Yuwei Zhang1,2,Enrique Barrigón1,2Arkady Yartsev1,3Magnus T. Borgström1,2( )
NanoLund Lund University Box 118, 221 00 Lund Sweden
Divison of Solid State Physics Lund University Box 118, 221 00 Lund Sweden
Divison of Chemical Physics Lund University Box 124, 221 00 Lund Sweden

Present address: Toyota Technological Institute, Nagoya, Aichi 468-8511, Japan

Show Author Information

Graphical Abstract

Abstract

Nanowires require surface passivation due to their inherent large surface to volume ratio. We investigate the effect of embedding InP nanowires in different oxides with respect to surface passivation by use of electron beam induced current measurements enabled by a nanoprobe based system inside a scanning electron microscope. The measurements reveal remote doping due to fixed charge carriers in the passivating POx/Al2O3 shell in contrast to results using SiOx. We used time-resolved photoluminescence to characterize the lifetime of charge carriers to evaluate the success of surface passivation. In addition, spatially resolved internal quantum efficiency simulations support and correlate the two applied techniques. We find that atomic-layer deposited POx/Al2O3 has the potential to passivate the surface of InP nanowires, but at the cost of inducing a field-effect on the nanowires, altering their electrostatic potential profile. The results show the importance of using complementary techniques to correctly evaluate and interpret processing related effects for optimization of nanowire-based optoelectronic devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3344_MOESM1_ESM.pdf (1.3 MB)

References

1

Anttu, N. Shockley–Queisser detailed balance efficiency limit for nanowire solar cells. ACS Photonics 2015, 2, 446–453.

2

Björk, M. T.; Ohlsson, B. J.; Sass, T.; Persson, A. I.; Thelander, C.; Magnusson, M. H.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. One-dimensional heterostructures in semiconductor nanowhiskers. Appl. Phys. Lett. 2002, 80, 1058–1060.

3

Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.

4

Plass, K. E.; Filler, M. A.; Spurgeon, J. M.; Kayes, B. M.; Maldonado, S.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Flexible polymer-embedded Si wire arrays. Adv. Mater. 2009, 21, 325–328.

5

Zhang, Y.; Hrachowina, L.; Barrigon, E.; Åberg, I.; Borgström, M. Self-limiting polymer exposure for vertical processing of semiconductor nanowire-based flexible electronics. ACS Appl. Nano Mater. 2020, 3, 7743–7749.

6

Otnes, G.; Borgström, M. T. Towards high efficiency nanowire solar cells. Nano Today 2017, 12, 31–45.

7

Haverkort, J. E. M.; Garnett, E. C.; Bakkers, E. P. A. M. Fundamentals of the nanowire solar cell: Optimization of the open circuit voltage. Appl. Phys. Rev. 2018, 5, 031106.

8

LaPierre, R. R.; Chia, A. C. E.; Gibson, S. J.; Haapamaki, C. M.; Boulanger, J.; Yee, R.; Kuyanov, P.; Zhang, J.; Tajik, N.; Jewell, N. et al. Ⅲ-Ⅴ nanowire photovoltaics: Review of design for high efficiency. Phys. Status Solidi (RRL) - Rapid Res. Lett. 2013, 7, 815–830.

9

Barrigón, E.; Heurlin, M.; Bi, Z. X.; Monemar, B.; Samuelson, L. Synthesis and applications of Ⅲ-Ⅴ nanowires. Chem. Rev. 2019, 119, 9170–9220.

10

van Vugt, L. K.; Veen, S. J.; Bakkers, E. P. A. M.; Roest, A. L.; Vanmaekelbergh, D. Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation. J. Am. Chem. Soc. 2005, 127, 12357–12362.

11

Lauhon, L. J.; Gudiksen, M. S.; Wang, D. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57–61.

12

Zhang, W.; Yang, F. F.; Messing, M. E.; Mergenthaler, K.; Pistol, M. E.; Deppert, K.; Samuelson, L.; Magnusson, M. H.; Yartsev, A. Recombination dynamics in aerotaxy-grown Zn-doped GaAs nanowires. Nanotechnology 2016, 27, 455704.

13

Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149–152.

14

Black, L. E.; Cavalli, A.; Verheijen, M. A.; Haverkort, J. E. M.; Bakkers, E. P. A. M.; Kessels, W. M. M. Effective surface passivation of InP nanowires by atomic-layer-deposited Al2O3 with POx interlayer. Nano Lett. 2017, 17, 6287–6294.

15

Zhong, Z.; Li, Z. Y.; Gao, Q.; Li, Z.; Peng, K.; Li, L.; Mokkapati, S.; Vora, K.; Wu, J.; Zhang, G. J. et al. Efficiency enhancement of axial junction InP single nanowire solar cells by dielectric coating. Nano Energy 2016, 28, 106–114.

16

Joyce, H. J.; Wong-Leung, J.; Yong, C. K.; Docherty, C. J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L. M. et al. Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. Nano Lett. 2012, 12, 5325–5330.

17

Otnes, G.; Barrigón, E.; Sundvall, C.; Svensson, K. E.; Heurlin, M.; Siefer, G.; Samuelson, L.; Åberg, I.; Borgström, M. T. Understanding InP nanowire array solar cell performance by nanoprobe-enabled single nanowire measurements. Nano Lett. 2018, 18, 3038–3046.

18

Mallorquí, A. D.; Alarcón-Lladó, E.; Mundet, I. C.; Kiani, A.; Demaurex, B.; De Wolf, S.; Menzel, A.; Zacharias, M.; Fontcuberta I Morral, A. Field-effect passivation on silicon nanowire solar cells. Nano Res. 2015, 8, 673–681.

19

Chang, C. C.; Chi, C. Y.; Yao, M. Q.; Huang, N. F.; Chen, C. C.; Theiss, J.; Bushmaker, A. W.; Lalumondiere, S.; Yeh, T. W.; Povinelli, M. L. et al. Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett. 2012, 12, 4484–4489.

20

Tchernycheva, M.; Neplokh, V.; Zhang, H.; Lavenus, P.; Rigutti, L.; Bayle, F.; Julien, F. H.; Babichev, A.; Jacopin, G.; Largeau, L. et al. Core-shell InGaN/GaN nanowire light emitting diodes analyzed by electron beam induced current microscopy and cathodoluminescence mapping. Nanoscale 2015, 7, 11692–11701.

21

Barrigón, E.; Hrachowina, L.; Borgström, M. T. Light current-voltage measurements of single, as-grown, nanowire solar cells standing vertically on a substrate. Nano Energy 2020, 78, 105191.

22

Saket, O.; Himwas, C.; Cattoni, A.; Oehler, F.; Bayle, F.; Collin, S.; Travers, L.; Babichev, A.; Julien, F. H.; Harmand, J. C. et al. Influence of surface passivation on the electrical properties of p–i–n GaAsP nanowires. Appl. Phys. Lett. 2020, 117, 123104.

23

Barrigón, E.; Zhang, Y.; Hrachowina, L.; Otnes, G.; Borgström, M. T. Unravelling processing issues of nanowire-based solar cell arrays by use of electron beam induced current measurements. Nano Energy 2020, 71, 104575.

24

Jia, G. B.; Steglich, M.; Sill, I.; Falk, F. Core–shell heterojunction solar cells on silicon nanowire arrays. Sol. Energy Mater. Sol. Cells 2012, 96, 226–230.

25

Togonal, A. S.; Foldyna, M.; Chen, W. H.; Wang, J. X.; Neplokh, V.; Tchernycheva, M.; Nassar, J.; Cabarrocas, P. R. I.; Rusli. Core–shell heterojunction solar cells based on disordered silicon nanowire arrays. J. Phys. Chem. C 2016, 120, 2962–2972.

26

Durose, K.; Asher, S. E.; Jaegermann, W.; Levi, D.; McCandless, B. E.; Metzger, W.; Moutinho, H.; Paulson, P. D.; Perkins, C. L.; Sites, J. R. et al. Physical characterization of thin-film solar cells. Prog. Photovolt.: Res. Appl. 2004, 12, 177–217.

27

Vulic, N.; Goodnick, S. M. Analysis of recombination processes in polytype gallium arsenide nanowires. Nano Energy 2019, 56, 196–206.

28

Chen, Y.; Kivisaari, P.; Pistol, M. E.; Anttu, N. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling. Nanotechnology 2016, 27, 435404.

29

Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.

30
Åberg, I.; Vescovi, G.; Asoli, D.; Naseem, U.; Gilboy, J. P.; Sundvall, C.; Dahlgren, A.; Svensson, K. E.; Anttu, N.; Björk, M. T. et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun. In Proceedings of 2015 IEEE 42nd Photovoltaic Specialist Conference, New Orleans, LA, USA, 2015.
31

Otnes, G.; Heurlin, M.; Graczyk, M.; Wallentin, J.; Jacobsson, D.; Berg, A.; Maximov, I.; Borgström, M. T. Strategies to obtain pattern fidelity in nanowire growth from large-area surfaces patterned using nanoimprint lithography. Nano Res. 2016, 9, 2852–2861.

32

Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

33

Borgström, M. T.; Wallentin, J.; Trägårdh, J.; Ramvall, P.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K. In situ etching for total control over axial and radial nanowire growth. Nano Res. 2010, 3, 264–270.

34

Su, X. J.; Zeng, X. L.; Němec, H.; Zou, X.; Zhang, W.; Borgström, M. T.; Yartsev, A. Effect of hydrogen chloride etching on carrier recombination processes of indium phosphide nanowires. Nanoscale 2019, 11, 18550–18558.

35

Borgström, M. T.; Norberg, E.; Wickert, P.; Nilsson, H. A.; Trägårdh, J.; Dick, K. A.; Statkute, G.; Ramvall, P.; Deppert, K.; Samuelson, L. Precursor evaluation for in situ InP nanowire doping. Nanotechnology 2008, 19, 445602.

36

Dreszer, P.; Chen, W. M.; Seendripu, K.; Wolk, J. A.; Walukiewicz, W.; Liang, B. W.; Tu, C. W.; Weber, E. R. Phosphorus antisite defects in low-temperature InP. Phys. Rev. B Condens. Matter 1993, 47, 4111–4114.

37

Temkin, H.; Dutt, B. V.; Bonner, W. A. Photoluminescence study of native defects in InP. Appl. Phys. Lett. 1981, 38, 431–433.

38

Hausmann, D.; Becker, J.; Wang, S. D.; Gordon, R. G. Rapid vapor deposition of highly conformal silica nanolaminates. Science 2002, 298, 402–406.

39

Chelikowsky, J. R.; Schlüter, M. Electron states in α-quartz: A self-consistent pseudopotential calculation. Physical Review B 1977, 15, 4020–4029.

40

Hjort, M.; Wallentin, J.; Timm, R.; Zakharov, A. A.; Andersen, J. N.; Samuelson, L.; Borgström, M. T.; Mikkelsen, A. Doping profile of InP nanowires directly imaged by photoemission electron microscopy. Appl. Phys. Lett. 2011, 99, 233113.

41

Gutsche, C.; Regolin, I.; Blekker, K.; Lysov, A.; Prost, W.; Tegude, F. J. Controllable p-type doping of GaAs nanowires during vapor- liquid-solid growth. J. Appl. Phys. 2009, 105, 024305.

42

Gutsche, C.; Lysov, A.; Regolin, I.; Blekker, K.; Prost, W.; Tegude, F. J. n-type doping of vapor-liquid-solid grown GaAs nanowires. Nanoscale Res. Lett. 2011, 6, 65.

43

Oener, S. Z.; Cavalli, A.; Sun, H. Y.; Haverkort, J. E. M.; Bakkers, E. P. A. M.; Garnett, E. C. Charge carrier-selective contacts for nanowire solar cells. Nat. Commun. 2018, 9, 3248.

44

Kim, S. H.; Joo, S. Y.; Jin, H. S.; Kim, W. B.; Park, T. J. Ultrathin ZnS and ZnO interfacial passivation layers for atomic-layer-deposited HfO2 films on InP substrates. ACS Appl. Mater. Interfaces 2016, 8, 20880–20884.

Nano Research
Pages 4087-4092
Cite this article:
Hrachowina L, Zou X, Chen Y, et al. Imaging the influence of oxides on the electrostatic potential of photovoltaic InP nanowires. Nano Research, 2021, 14(11): 4087-4092. https://doi.org/10.1007/s12274-021-3344-9
Topics:

771

Views

21

Downloads

5

Crossref

6

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 30 September 2020
Revised: 15 December 2020
Accepted: 19 January 2021
Published: 06 February 2021
© The Author(s) 2021

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return