Graphical Abstract

Graphene is a material with unique properties that can be exploited in electronics, catalysis, energy, and bio-related fields. Although, for maximal utilization of this material, high-quality graphene is required at both the growth process and after transfer of the graphene film to the application-compatible substrate. Chemical vapor deposition (CVD) is an important method for growing high-quality graphene on non-technological substrates (as, metal substrates, e.g., copper foil). Thus, there are also considerable efforts toward the efficient and non-damaging transfer of quality of graphene on to technologically relevant materials and systems. In this review article, a range of graphene current transfer techniques are reviewed from the standpoint of their impact on contamination control and structural integrity preservation of the as-produced graphene. In addition, their scalability, cost- and time-effectiveness are discussed. We summarize with a perspective on the transfer challenges, alternative options and future developments toward graphene technology.
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.
Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Boggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810.
Ma, L. P.; Ren, W. C.; Cheng, H. M. Transfer methods of graphene from metal substrates: A review. Small Methods 2019, 3, 1900049.
Chen, Z. L.; Qi, Y.; Chen, X. D.; Zhang, Y. F.; Liu, Z. F. Direct CVD growth of graphene on traditional glass: Methods and mechanisms. Adv. Mater. 2019, 31, e1803639.
Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.
Deokar, G.; Avila, J.; Razado-Colambo, I.; Codron, J. L.; Boyaval, C.; Galopin, E.; Asensio, M. C.; Vignaud, D. Towards high quality CVD graphene growth and transfer. Carbon 2015, 89, 82–92.
Muñoz, R.; Gómez-Aleixandre, C. Review of CVD synthesis of graphene. Chem. Vap. Depos. 2013, 19, 297–322.
Yang, X. J.; Yan, M. D. Removing contaminants from transferred CVD graphene. Nano Res. 2020, 13, 599–610.
Wang, H. P.; Yu, G. Direct CVD graphene growth on semiconductors and dielectrics for transfer-free device fabrication. Adv. Mater. 2016, 28, 4956–4975.
Comanescu, F.; Istrate, A.; Purica, M. Assessing by Raman spectroscopy the quality of CVD graphene transferred on oxidized silicon and quartz substrates. Rom. J. Inf. Sci. Tech. 2019, 22, 30–40.
Kostogrud, I. A.; Boyko, E. V.; Smovzh, D. V. The main sources of graphene damage at transfer from copper to PET/EVA polymer. Mater. Chem. Phys. 2018, 219, 67–73.
Amiri, M. H.; Heidler, J.; Hasnain, A.; Anwar, S.; Lu, H.; Müllen, K.; Asadi, K. Doping free transfer of graphene using aqueous ammonia flow. RSC Adv. 2020, 10, 1127–1131.
Lee, H. C.; Liu, W. W.; Chai, S. P.; Mohamed, A. R.; Aziz, A.; Khe, C. S.; Hidayah, N. M.; Hashim, U. Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Adv. 2017, 7, 15644–15693.
Ambrosi, A.; Pumera, M. The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale 2014, 6, 472–476.
Leong, W. S.; Wang, H. Z.; Yeo, J. J.; Martin-Martinez, F. J.; Zubair, A.; Shen, P. C.; Mao, Y. W.; Palacios, T.; Buehler, M. J.; Hong, J. Y. et al. Paraffin-enabled graphene transfer. Nat. Commun. 2019, 10, 867.
Chen, Y.; Gong, X. L.; Gai, J. G. Progress and challenges in transfer of large-area graphene films. Adv. Sci. 2016, 3, 1500343.
Kang, S.; Yoon, T.; Kim, S.; Kim, T. S. Role of crack deflection on rate dependent mechanical transfer of multilayer graphene and its application to transparent electrodes. ACS Appl. Nano Mater. 2019, 2, 1980–1985.
Chandrashekar, B. N.; Smitha, A. S.; Wu, Y. C.; Cai, N. D.; Li, Y. L.; Huang, Z. Y.; Wang, W. J.; Shi, R.; Wang, J. W.; Liu, S. Y. et al. A universal stamping method of graphene transfer for conducting flexible and transparent polymers. Sci. Rep. 2019, 9, 3999.
Cai, C. Y.; Jia, F. X.; Li, A. L.; Huang, F.; Xu, Z. H.; Qiu, L. Z.; Chen, Y. Q.; Fei, G. T.; Wang, M. Crackless transfer of large-area graphene films for superior-performance transparent electrodes. Carbon 2016, 98, 457–462.
Ullah, S.; Hasan, M.; Ta, H. Q.; Zhao, L.; Shi, Q. T.; Fu, L.; Choi, J.; Yang, R. Z.; Liu, Z. F.; Rümmeli, M. H. Synthesis of doped porous 3D graphene structures by chemical vapor deposition and its applications. Adv. Funct. Mater. 2019, 29, 1904457.
Wang, X. W.; Sun, G. Z.; Routh, P.; Kim, D. H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098.
Kaur, G.; Kavitha, K.; Lahiri, I. Transfer-free graphene growth on dielectric substrates: A review of the growth mechanism. Crit. Rev. Solid State Mater. Sci. 2019, 44, 157–209.
Lisi, N.; Dikonimos, T.; Buonocore, F.; Pittori, M.; Mazzaro, R.; Rizzoli, R.; Marras, S.; Capasso, A. Contamination-free graphene by chemical vapor deposition in quartz furnaces. Sci. Rep. 2017, 7, 9927.
Tan, H.; Wang, D. G.; Guo, Y. B. Thermal growth of graphene: A review. Coatings 2018, 8, 40.
Chen, M. G.; Haddon, R. C.; Yan, R. X.; Bekyarova, E. Advances in transferring chemical vapour deposition graphene: A review. Mater. Horiz. 2017, 4, 1054–1063.
Ahn, Y.; Kim, H.; Kim, Y. H.; Yi, Y.; Kim, S. I. Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene. Appl. Phys. Lett. 2013, 102, 091602.
Zhao, P.; Kumamoto, A.; Kim, S.; Chen, X.; Hou, B.; Chiashi, S.; Einarsson, E.; Ikuhara, Y.; Maruyama, S. Self-limiting chemical vapor deposition growth of monolayer graphene from ethanol. J. Phys. Chem. C 2013, 117, 10755–10763.
Qu, J. Y.; Li, B. W.; Shen, Y. T.; Huo, S. C.; Xu, Y.; Liu, S. Y.; Song, B. K.; Wang, H.; Hu, C. G.; Feng, W. Evaporable glass-state molecule-assisted transfer of clean and intact graphene onto arbitrary substrates. ACS Appl. Mater. Interfaces 2019, 11, 16272–16279.
Wang, Y.; Zheng, Y.; Xu, X. F.; Dubuisson, E.; Bao, Q. L.; Lu, J.; Loh, K. P. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano 2011, 5, 9927–9933.
Mafra, D. L.; Ming, T.; Kong, J. Facile graphene transfer directly to target substrates with a reusable metal catalyst. Nanoscale 2015, 7, 14807–14812.
Takeya, K.; Ikegami, Y.; Matsumura, K.; Kawase, K.; Uchida, H. Optical evaluation of CYTOP, an amorphous fluoropolymer, in the terahertz frequency across a wide temperature range. Appl. Phys. Express 2019, 12, 042004.
Lee, W. H.; Suk, J. W.; Lee, J.; Hao, Y. F.; Park, J.; Yang, J. W.; Ha, H. W.; Murali, S.; Chou, H.; Akinwande, D. et al. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic. ACS Nano 2012, 6, 1284–1290.
Suk, J. W.; Lee, W. H.; Lee, J.; Chou, H.; Piner, R. D.; Hao, Y. F.; Akinwande, D.; Ruoff, R. S. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett. 2013, 13, 1462–1467.
Wood, J. D.; Doidge, G. P.; Carrion, E. A.; Koepke, J. C.; Kaitz, J. A.; Datye, I.; Behnam, A.; Hewaparakrama, J.; Aruin, B.; Chen, Y. F. Annealing free, clean graphene transfer using alternative polymer scaffolds. Nanotechnology 2015, 26, 055302.
Chen, M. G.; Stekovic, D.; Li, W. X.; Arkook, B.; Haddon, R. C.; Bekyarova, E. Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons. Nanotechnology 2017, 28, 255701.
Wang, B.; Luo, D.; Li, Z. C.; Kwon, Y.; Wang, M. H.; Goo, M.; Jin, S.; Huang, M.; Shen, Y. T.; Shi, H. F. et al. Camphor-enabled transfer and mechanical testing of centimeter-scale ultrathin films. Adv. Mater. 2018, 30, 1800888.
De Castro, R. K.; Araujo, J. R.; Valaski, R.; Costa, L. O. O.; Archanjo, B. S.; Fragneaud, B.; Cremona, M.; Achete, C. A. New transfer method of CVD-grown graphene using a flexible, transparent and conductive polyaniline-rubber thin film for organic electronic applications. Chem. Eng. J. 2015, 273, 509–518.
Park, H.; Park, I. J.; Jung, D. Y.; Lee, K. J.; Yang, S. Y.; Choi, S. Y. Polymer-free graphene transfer for enhanced reliability of graphene field-effect transistors. 2D Mater. 2016, 3, 021003.
Jang, M.; Trung, T. Q.; Jung, J. H.; Kim, B. Y.; Lee, N. E. Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer. Phys. Chem. Chem. Phys. 2014, 16, 4098–4105.
Zhang, G. H.; Guell, A. G.; Kirkman, P. M.; Lazenby, R. A.; Miller, T. S.; Unwin, P. R. Versatile polymer-free graphene transfer method and applications. ACS Appl. Mater. Interfaces 2016, 8, 8008–8016.
Park, H.; Lim, C.; Lee, C. J.; Kang, J.; Kim, J.; Choi, M.; Park, H. Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer. Nanotechnology 2018, 29, 415303.
Chandrashekar, B. N.; Cai, N.; Liu, L. W. Y.; Smitha, A. S.; Wu, Z. F.; Chen, P. C.; Shi, R.; Wang, W. J.; Wang, J. W.; Tang, C. M. et al. Oil boundary approach for sublimation enabled camphor mediated graphene transfer. J. Colloid Interface Sci. 2019, 546, 11–19.
Qi, P. W.; Huang, Y. N.; Yao, Y. Z.; Li, Q.; Lian, Y. B.; Lin, L.; Wang, X. B.; Gu, Y. D.; Li, L. Q.; Deng, Z. et al. Wax-assisted crack-free transfer of monolayer CVD graphene: Extending from standalone to supported copper substrates. Appl. Surf. Sci. 2019, 493, 81–86.
Shahzad, K.; Jia, K. P.; Zhao, C.; Yan, X. Y.; Yadong, Z.; Usman, M.; Luo, J. An improved rosin transfer process for the reduction of residue particles for graphene. Nanoscale Res. Lett. 2020, 15, 85.
Zhang, X. W.; Xu, C.; Zou, Z. X.; Wu, Z. H.; Yin, S. Q.; Zhang, Z. L.; Liu, J. L.; Xia, Y.; Lin, C. T.; Zhao, P. et al. A scalable polymer-free method for transferring graphene onto arbitrary surfaces. Carbon 2020, 161, 479–485.
Huet, B.; Raskin, J. P.; Snyder, D. W.; Redwing, J. M. Fundamental limitations in transferred CVD graphene caused by Cu catalyst surface morphology. Carbon 2020, 163, 95–104.
Abdalrheem, R.; Yam, F. K.; Ibrahim, A. R.; Beh, K. P.; Ng, Y. Z.; Suhaimi, F. H. A.; Lim, H. S.; Jafri, M. Z.; Oglat, A. A. Comparative studies on the transfer of chemical vapor deposition grown graphene using either electrochemical delamination or chemical etching method. J. Phys. Conf. Ser. 2018, 1083, 012038.
Yang, X. W.; Peng, H. L.; Xie, Q.; Zhou, Y.; Liu, Z. F. Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. J. Electroanal. Chem. 2013, 688, 243–248.
Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.
Shi, L. J.; Liu, Y. Q.; Yang, F.; Gao, L.; Sun, J. A symmetrical bi-electrode electrochemical technique for high-efficiency transfer of CVD-grown graphene. Nanotechnology 2014, 25, 145704.
Zhang, D. Y.; Jin, Z.; Shi, J. Y.; Wang, X. Y.; Peng, S. A.; Wang, S. Q. The electrochemical transfer of CVD-graphene using agarose gel as solid electrolyte and mechanical support layer. Chem. Commun. 2015, 51, 2987–2990.
Liu, L. H.; Shang, W. J.; Han, C.; Zhang, Q.; Yao, Y.; Ma, X. Q.; Wang, M. H.; Yu, H. T.; Duan, Y.; Sun, J. et al. Two-in-one method for graphene transfer: Simplified fabrication process for organic light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 7289–7295.
Lu, W. E.; Cheng, S.; Yan, M. J.; Wang, Y. W.; Xia, Y. Selective soluble polymer-assisted electrochemical delamination of chemical vapor deposition graphene. J. Solid State Electrochem. 2019, 23, 943–951.
Verguts, K.; Coroa, J.; Huyghebaert, C.; De Gendt, S.; Brems, S. Graphene delamination using "electrochemical methods": An ion intercalation effect. Nanoscale 2018, 10, 5515–5521.
Gorantla, S.; Bachmatiuk, A.; Hwang, J.; Alsalman, H. A.; Kwak, J. Y.; Seyller, T.; Eckert, J.; Spencer, M. G.; Rümmeli, M. H. A universal transfer route for graphene. Nanoscale 2014, 6, 889–896.
Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.
Moon, J. Y.; Kim, S. I.; Son, S. K.; Kang, S. G.; Lim, J. Y.; Lee, D. K.; Ahn, B.; Whang, D.; Yu, H. K.; Lee, J. H. An eco-friendly, CMOS-compatible transfer process for large-scale CVD-graphene. Adv. Mater. Interfaces 2019, 6, 1900084.
Shivayogimath, A.; Whelan, P. R.; Mackenzie, D. M. A.; Luo, B. R.; Huang, D. P.; Luo, D.; Wang, M. H.; Gammelgaard, L.; Shi, H. F.; Ruoff, R. S. et al. Do-it-yourself transfer of large-area graphene using an office laminator and water. Chem. Mater. 2019, 31, 2328–2336.
Marchena, M.; Wagner, F.; Arliguie, T.; Zhu, B.; Johnson, B.; Fernández, M.; Chen, T. L.; Chang, T.; Lee, R.; Pruneri, V. et al. Dry transfer of graphene to dielectrics and flexible substrates using polyimide as a transparent and stable intermediate layer. 2D Mater. 2018, 5, 035022.
Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y. F.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924.
Feng, Y.; Chen, K. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications. Nanotechnology 2015, 26, 035302.
Kim, J. W.; Woo, J. Y.; Jo, S.; Oh, J. H.; Hong, W.; Lee, B. C.; Jung, H. J.; Kim, J. H.; Roh, S. C.; Han, C. S. Clean and less defective transfer of monolayer graphene by floatation in hot water. Appl. Surf. Sci. 2020, 508, 145057.
Kim, H. H.; Chung, Y.; Lee, E.; Lee, S. K.; Cho, K. Water-free transfer method for CVD-grown graphene and its application to flexible air-stable graphene transistors. Adv. Mater. 2014, 26, 3213– 3217.
Fechine, G. J. M.; Martin-Fernandez, I.; Yiapanis, G.; Bentini, R.; Kulkarni, E. S.; De Oliveira, R. V. B.; Hu, X.; Yarovsky, I.; Neto, A. H. C.; Özyilmaz, B. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates. Carbon 2015, 83, 224–231.
Kessler, F.; Muñoz, P. A. R.; Phelan, C.; Romani, E. C.; Larrudé, D. R. G.; Júnior, F. L. F.; De Souza, E. A. T.; De Matos, C. J. S.; Fechine, G. J. M. Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization. Appl. Surf. Sci. 2018, 440, 55–60.
Xin, H.; Li, W. A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene. Appl. Phys. Rev. 2018, 5, 031105.
Chandrashekar, B. N.; Deng, B.; Smitha, A. S.; Chen, Y. B.; Tan, C. W.; Zhang, H. X.; Peng, H. L.; Liu, Z. F. Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 2015, 27, 5210–5216.
Xin, H.; Zhao, Q. S.; Chen, D. M.; Li, W. Roll-to-roll mechanical peeling for dry transfer of chemical vapor deposition graphene. J. Micro Nano-Manuf. 2018, 6, 031004.
Hempel, M.; Lu, A. Y.; Hui, F.; Kpulun, T.; Lanza, M.; Harris, G.; Palacios, T.; Kong, J. Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination. Nanoscale 2018, 10, 5522–5531.
Jang, B.; Kim, C. H.; Choi, S. T.; Kim, K. S.; Kim, K. S.; Lee, H. J.; Cho, S.; Ahn, J. H.; Kim, J. H. Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2D Mater. 2017, 4, 024002.
Ma, L. P.; Dong, S. C.; Chen, M. L.; Ma, W.; Sun, D. M.; Gao, Y.; Ma, T.; Cheng, H. M.; Ren, W. C. UV-epoxy-enabled simultaneous intact transfer and highly efficient doping for roll-to-roll production of high-performance graphene films. ACS Appl. Mater. Interfaces 2018, 10, 40756–40763.
Ballesio, A.; Parmeggiani, M.; Verna, A.; Frascella, F.; Cocuzza, M.; Pirri, C. F.; Marasso, S. L. A novel hot embossing Graphene transfer process for flexible electronics. Microelectron. Eng. 2019, 209, 16–19.
Wang, D. Y.; Huang, I. S.; Ho, P. H.; Li, S. S.; Yeh, Y. C.; Wang, D. W.; Chen, W. L.; Lee, Y. Y.; Chang, Y. M.; Chen, C. C. et al. Clean-lifting transfer of large-area residual-free graphene films. Adv. Mater. 2013, 25, 4521–4526.
Jung, W.; Kim, D.; Lee, M.; Kim, S.; Kim, J. H.; Han, C. S. Ultraconformal contact transfer of monolayer graphene on metal to various substrates. Adv. Mater. 2014, 26, 6394–6400.
Lin, W. H.; Chen, T. H.; Chang, J. K.; Taur, J. I.; Lo, Y. Y.; Lee, W. L.; Chang, C. S.; Su, W. B.; Wu, C. I. A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 2014, 8, 1784–1791.
Bautista-Flores, C.; Sato-Berrú, R. Y.; Mendoza, D. Raman spectroscopy of CVD graphene during transfer process from copper to SiO2/Si substrates. Mater. Res. Express 2018, 6, 015601.
Li, R. H.; Li, Z.; Pambou, E.; Gutfreund, P.; Waigh, T. A.; Webster, J. R. P.; Lu, J. R. Determination of PMMA residues on a chemical-vapor-deposited monolayer of graphene by neutron reflection and atomic force microscopy. Langmuir 2018, 34, 1827–1833.
Son, B. H.; Kim, H. S.; Jeong, H.; Park, J. Y.; Lee, S.; Ahn, Y. H. Electron beam induced removal of PMMA layer used for graphene transfer. Sci. Rep. 2017, 7, 18058.
Jia, Y. H.; Gong, X.; Peng, P.; Wang, Z. D.; Tian, Z. Z.; Ren, L. M.; Fu, Y. Y.; Zhang, H. Toward high carrier mobility and low contact resistance: Laser cleaning of PMMA residues on graphene surfaces. Nano-Micro Lett. 2016, 8, 336–346.
Pham, T. T.; Do, Q. H.; Ngo, T. K. V.; Sporken, R. Direct transfer of the CVD-grown graphene on copper foils on SiO2 substrate under supercritical CO2 assisted-cleaning technique. Mater Today Commun. 2019, 18, 184–190.
Zhang, J. C.; Jia, K. C.; Lin, L.; Zhao, W.; Quang, H. T.; Sun, L. Z.; Li, T. R.; Li, Z. Z.; Liu, X. T.; Zheng, L. M. et al. Large-area synthesis of superclean graphene via selective etching of amorphous carbon with carbon dioxide. Angew. Chem., Int. Ed. 2019, 58, 14446–14451.
Song, I.; Park, Y.; Cho, H.; Choi, H. C. Transfer-free, large-scale growth of high-quality graphene on insulating substrate by physical contact of copper foil. Angew. Chem., Int. Ed. 2018, 57, 15374–15378.
Dong, Y. B.; Xie, Y. Y.; Xu, C.; Fu, Y. F.; Fan, X.; Li, X. J.; Wang, L.; Xiong, F. Z.; Guo, W. L.; Pan, G. Z. Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst. Nanotechnology 2018, 29, 365301.
Guo, L. C.; Zhang, Z. Y.; Sun, H. Y.; Dai, D.; Cui, J. F.; Li, M. Z.; Xu, Y.; Xu, M. S.; Du, Y. F.; Jiang, N. et al. Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD. Carbon 2018, 129, 456–461.
Shin, B. G.; Boo, D. H.; Song, B.; Jeon, S.; Kim, M.; Park, S.; An, E. S.; Kim, J. S.; Song, Y. J.; Lee, Y. H. Single-crystalline monolayer graphene wafer on dielectric substrate of SiON without metal catalysts. ACS Nano 2019, 13, 6662–6669.
Pang, J. B.; Mendes, R. G.; Wrobel, P. S.; Wlodarski, M. D.; Ta, H. Q.; Zhao, L.; Giebeler, L.; Trzebicka, B.; Gemming, T.; Fu, L. et al. Self-terminating confinement approach for large-area uniform monolayer graphene directly over Si/SiOx by chemical vapor deposition. ACS Nano 2017, 11, 1946–1956.
Khan, A.; Islam, S. M.; Ahmed, S.; Kumar, R. R.; Habib, M. R.; Huang, K.; Hu, M.; Yu, X. G.; Yang, D. R. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 2018, 5, 1800050.
Qing, F. Z.; Zhang, Y. F.; Niu, Y. T.; Stehle, R.; Chen, Y. F.; Li, X. S. Towards large-scale graphene transfer. Nanoscale 2020, 12, 10890– 10911.
Lin, L.; Peng, H. L.; Liu, Z. F. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524.
Mendes, R. G.; Pang, J. B.; Bachmatiuk, A.; Ta, H. Q.; Zhao, L.; Gemming, T.; Fu, L.; Liu, Z. F.; Ru
Kotal, M.; Kim, J.; Kim, K. J.; Oh, I. K. Sulfur and nitrogen Co-doped graphene electrodes for high-performance ionic artificial muscles. Adv. Mater. 2016, 28, 1610–1615.
Leong, W. S.; Arrabito, G.; Prestopino, G. Artificial intelligence algorithm enabled industrial-scale graphene characterization. Crystals 2020, 10, 308.
Cha, S.; Cha, M.; Lee, S.; Kang, J. H.; Kim, C. Low-temperature, dry transfer-printing of a patterned graphene monolayer. Sci. Rep. 2015, 5, 17877.