AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controlled growth of transition metal dichalcogenide via thermogravimetric prediction of precursors vapor concentration

Long Fang1Shaohua Tao1Zhenzhen Tian1Kunwu Liu1Xi Li2Jiang Zhou3Han Huang1Jun He1Xiaoming Yuan1( )
Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China
School of Materials Science and Engineering, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

Abstract

Transition metal dichalcogenide (TMD) alloys and heterostructures are attracting increasing attention thanks to their unique electronic, optical, and interfacial properties. However, the growth fundamental of TMD alloys and heterostructures during one-step growth is still beyond understanding. Here, thermogravimetric (TG/DTG) technology is introduced to predict the evolution of the precursor (MoO3 and WO3) concentration in the vapor during growth. We establish the correlation between precursor concentration and the corresponding growth behavior. TG/DTG predication suggests that tuning precursor temperature and powder ratio can alter their concentration in the vapor, well explaining the formation of MoxW1-xSe2 alloy or MoSe2-WSe2 heterostructure at different growth conditions. Based on the TG/DTG analysis, we further design and grow a complex MoSe2-MoxW1-xSe2-WSe2 heterostructure and MoxW1-xS2 monolayer alloys, confirming the validity of TG/DTG prediction in TMD crystal synthesis. Thus, employing TG/DTG to predict the synthesis of two-dimensional materials is of importance to understand the TMD growth behavior and provide guidance to the desired TMD heterostructure formation for future photoelectric devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3347_MOESM1_ESM.pdf (3.1 MB)

References

[1]
Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116-130.
[2]
Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091-6133.
[3]
Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.
[4]
Jiang, J.; Hu, W. N.; Xie, D. D.; Yang, J. L.; He, J.; Gao, Y. L.; Wan, Q. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale 2019, 11, 1360-1369.
[5]
Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859-8876.
[6]
Zheng, X. M.; Zhang, X. A.; Wei, Y. H.; Liu, J. X.; Yang, H.; Zhang, X. Z.; Wang, S. T.; Xie, H. P.; Deng, C. Y.; Gao, Y. L. et al. Enormous enhancement in electrical performance of few-layered MoTe2 due to Schottky barrier reduction induced by ultraviolet ozone treatment. Nano Res. 2020, 13, 952-958.
[7]
Zheng, B. Y.; Ma, C.; Li, D.; Lan, J. Y.; Zhang, Z.; Sun, X. X.; Zheng, W. H.; Yang, T. F.; Zhu, C. G.; Ouyang, G. et al. Band alignment engineering in two-dimensional lateral heterostructures. J. Am. Chem. Soc. 2018, 140, 11193-11197.
[8]
Frisenda, R.; Molina-Mendoza, A. J.; Mueller, T.; Castellanos-Gomez, A.; van der Zant, H. S. J. Atomically thin p-n junctions based on two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3339-3358.
[9]
Zhou, J. D.; Tang, B. J.; Lin, J. H.; Lv, D. H.; Shi, J.; Sun, L. F.; Zeng, Q. S.; Niu, L.; Liu, F. C.; Wang, X. W. et al. Morphology engineering in monolayer MoS2-WS2 lateral heterostructures. Adv. Funct. Mater. 2018, 28, 1801568.
[10]
Li, X. F.; Lin, M. W.; Basile, L.; Hus, S. M.; Puretzky, A. A.; Lee, J.; Kuo, Y. C.; Chang, L. Y.; Wang, K.; Idrobo, J. C. et al. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 2016, 28, 8240-8247.
[11]
Liu, D. Y.; Hong, J. H.; Li, X. B.; Zhou, X.; Jin, B.; Cui, Q. N.; Chen, J. P.; Feng, Q. L.; Xu, C. X.; Zhai, T. Y. et al. Synthesis of 2H-1T’ WS2-ReS2 heterophase structures with atomically sharp interface via hydrogen-triggered one-pot growth. Adv. Funct. Mater. 2020, 30, 1910169.
[12]
Yang, R. L.; Liu, L. X.; Feng, S. H.; Liu, Y. J.; Li, S. L.; Zhai, K.; Xiang, J. Y.; Mu, C. P.; Nie, A. M.; Wen, F. S. et al. One-step growth of spatially graded Mo1-xWxS2 Monolayers with a wide span in composition (from x = 0 to 1) at a large scale. ACS Appl. Mater. Interfaces 2019, 11, 20979-20986.
[13]
Li, F.; Feng, Y. X.; Li, Z. W.; Ma, C.; Qu, J. Y.; Wu, X. P.; Li, D.; Zhang, X. H.; Yang, T. F.; He, Y. Q. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 2019, 31, 1901351.
[14]
Sahoo, P. K.; Memaran, S.; Xin, Y.; Balicas, L.; Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 2018, 553, 63-67.
[15]
Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788-792.
[16]
Lee, J.; Pak, S.; Lee, Y. W.; Park, Y.; Jang, A. R.; Hong, J.; Cho, Y.; Hou, B.; Lee, S.; Jeong, H. Y. et al. Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano 2019, 13, 13047-13055.
[17]
Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135-6141.
[18]
Bayer, B. C.; Kaindl, R.; Monazam, M. R. A.; Susi, T.; Kotakoski, J.; Gupta, T.; Eder, D.; Waldhauser, W.; Meyer, J. C. Atomic-scale in situ observations of crystallization and restructuring processes in two-dimensional MoS2 films. ACS Nano 2018, 12, 8758-8769.
[19]
Fei, L. F.; Lei, S. J.; Zhang, W. B.; Lu, W.; Lin, Z. Y.; Lam, C. H.; Chai, Y.; Wang, Y. Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat. Commun. 2016, 7, 12206.
[20]
Rasouli, H. R.; Mehmood, N.; Çakıroğlu, O.; Kasırga, T. S. Real time optical observation and control of atomically thin transition metal dichalcogenide synthesis. Nanoscale 2019, 11, 7317-7323.
[21]
Liu, B. L.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y. Q.; Zhou, C. W. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 2015, 9, 6119-6127.
[22]
Pondick, J. V.; Woods, J. M.; Xing, J.; Zhou, Y.; Cha, J. J. Stepwise sulfurization from MoO3 to MoS2 via chemical vapor deposition. ACS Appl. Nano Mater. 2018, 1, 5655-5661.
[23]
Yang, M.; Cheng, X. R.; Li, Y. Y.; Ren, Y. F.; Liu, M.; Qi, Z. M. Anharmonicity of monolayer MoS2, MoSe2, and WSe2: A Raman study under high pressure and elevated temperature. Appl. Phys. Lett. 2017, 110, 093108.
[24]
Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908-4916.
[25]
Apte, A.; Kochat, V.; Rajak, P.; Krishnamoorthy, A.; Manimunda, P.; Hachtel, J. A.; Idrobo, J. C.; Amanulla, S. A. S.; Vashishta, P.; Nakano, A. et al. Structural phase transformation in strained monolayer MoWSe2 alloy. ACS Nano 2018, 12, 3468-3476.
[26]
Chang, Y. H.; Zhang, W. J.; Zhu, Y.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582-8590.
[27]
Fang, L.; Yuan, X. M.; Liu, K. W.; Li, L.; Zhou, P.; Ma, W.; Huang, H.; He, J.; Tao, S. H. Direct bilayer growth: A new growth principle for a novel WSe2 homo-junction and bilayer WSe2 growth. Nanoscale 2020, 12, 3715-3722.
[28]
Wilken, T. R.; Morcom, W. R.; Wert, C. A.; Woodhouse, J. B. Reduction of tungsten oxide to tungsten metal. Metall. Trans. B, 1976, 7, 589-597.
[29]
Hougen, J. O.; Reeves, R. R.; Mannella, G. G. Reduction of tungsten oxides with hydrogen. Ind. Eng. Chem. 1956, 48, 318-320.
[30]
Fang, L.; Chen, H. T.; Yuan, X. M.; Huang, H.; Chen, G.; Li, L.; Ding, J. N.; He, J.; Tao, S. H. Quick optical identification of the defect formation in monolayer WSe2 for growth optimization. Nanoscale Res. Lett. 2019, 14, 274.
[31]
Ullah, F.; Sim, Y.; Le, C. T.; Seong, M. J.; Jang, J. I.; Rhim, S. H.; Khac, B. C. T.; Chung, K. H.; Park, K.; Lee, Y. et al. Growth and simultaneous valleys manipulation of two-dimensional MoSe2-WSe2 lateral heterostructure. ACS Nano 2017, 11, 8822-8829.
[32]
Zhang, M.; Wu, J. X.; Zhu, Y. M.; Dumcenco, D. O.; Hong, J. H.; Mao, N. N.; Deng, S. B.; Chen, Y. F.; Yang, Y. L.; Jin, C. H. et al. Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano 2014, 8, 7130-7137.
[33]
Tongay, S.; Narang, D. S.; Kang, J.; Fan, W.; Ko, C. H.; Luce, A. V.; Wang, K. X.; Suh, J.; Patel, K. D.; Pathak, V. M. et al. Two-dimensional semiconductor alloys: Monolayer Mo1-xWxSe2. Appl. Phys. Lett. 2014, 104, 012101.
[34]
Zhao, S. D.; Tao, L.; Miao, P.; Wang, X. J.; Liu, Z. G.; Wang, Y.; Li, B. S.; Sui, Y.; Wang, Y. Strong room-temperature emission from defect states in CVD-grown WSe2 nanosheets. Nano Res. 2018, 11, 3922-3930.
[35]
Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966-971.
[36]
Lan, C. Y.; Li, C.; Yin, Y.; Liu, Y. Large-area synthesis of monolayer WS2 and its ambient-sensitive photo-detecting performance. Nanoscale 2015, 7, 5974-5980.
[37]
Wang, Z. Q.; Liu, P.; Ito, Y.; Ning, S. C.; Tan, Y. W.; Fujita, T.; Hirata, A.; Chen, M. W. Chemical vapor deposition of monolayer Mo1-xWxS2 crystals with tunable band gaps. Sci. Rep. 2016, 6, 21536.
[38]
Park, J.; Kim, M. S.; Park, B.; Oh, S. H.; Roy, S.; Kim, J.; Choi, W. Composition-tunable synthesis of large-scale Mo1-xWxS2 alloys with enhanced photoluminescence. ACS Nano 2018, 12, 6301-6309.
[39]
Zhou, J. D.; Liu, F. C.; Lin, J. H.; Huang, X. W.; Xia, J.; Zhang, B. W.; Zeng, Q. S.; Wang, H.; Zhu, C.; Niu, L. et al. Large-area and high-quality 2D transition metal telluride. Adv. Mater. 2017, 29, 1603471.
Nano Research
Pages 2867-2874
Cite this article:
Fang L, Tao S, Tian Z, et al. Controlled growth of transition metal dichalcogenide via thermogravimetric prediction of precursors vapor concentration. Nano Research, 2021, 14(8): 2867-2874. https://doi.org/10.1007/s12274-021-3347-6
Topics:

664

Views

6

Crossref

7

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 05 November 2020
Revised: 12 January 2021
Accepted: 19 January 2021
Published: 17 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return