AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tuning the performance of nitrogen reduction reaction by balancing the reactivity of N2 and the desorption of NH3

Lijuan Niu1Dandan Wang2Kang Xu3Weichang Hao3Li An1( )Zhenhui Kang4,5( )Zaicheng Sun1( )
Beijing Key Laboratory for Green Catalysis and Separation Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing University of TechnologyBeijing 100124 China
Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education College of Physics, Jilin Normal UniversitySiping 136000 China
Department of Physics Key Laboratory of Micro-Nano Measurement, Manipulation and Physics, Ministry of Education, Beihang UniversityBeijing 100191 China
Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM), Soochow UniversitySuzhou 215123 China
Macao Institute of Materials Science and Engineering Macau University of Science and TechnologyMacau SAR Taipa 999078 China
Show Author Information

Graphical Abstract

Abstract

Electrochemical reduction of nitrogen to ammonia under mild conditions provides an intriguing approach for energy conversion. A grand challenge for electrochemical nitrogen reduction reaction (NRR) is to design a superior electrocatalyst to obtain high performance including high catalytic activity and selectivity. In the NRR process, the three most important steps are nitrogen adsorption, nitrogen activation, and ammonia desorption. We take MoS2 as the research object and obtain catalysts with different electronic densities of states through the doping of Fe and V, respectively. Using a combination of experiments and theoretical calculations, it is demonstrated that V-doped MoS2 (MoS2-V) shows better nitrogen adsorption and activation, while Fe-doped MoS2 (MoS2-Fe) obtains the highest ammonia yield in experiments (20.11 µg·h-1·mgcat–1.) due to its easier desorption of ammonia. Therefore, an appropriate balance between nitrogen adsorption, nitrogen activation, and ammonia desorption should be achieved to obtain highly efficient NRR electrocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2021_3348_MOESM1_ESM.pdf (2.9 MB)

References

1

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

2

Nielsen, A. Ammonia: Catalysis and Manufacture; Springer: Berlin, Heidelberg, 1995.

3

Wang, L.; Xia, M. K.; Wang, H.; Huang, K. F.; Qian, C. X.; Maravelias, C. T.; Ozin, G. A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055–1074.

4

Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis—The selectivity challenge. ACS Catal. 2017, 7, 706–709.

5

Wang, Y.; Meyer, T. J. A route to renewable energy triggered by the Haber-Bosch process. Chem 2019, 5, 496–497.

6

Venkateswara Rao, P.; Holm, R. H. Synthetic analogues of the active sites of iron−sulfur proteins. Chem. Rev. 2004, 104, 527–560.

7

Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. Synthesis and facet- dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2012, 134, 4473–4476.

8

Liu, J.; Kelley, M. S.; Wu, W. Q.; Banerjee, A.; Douvalis, A. P.; Wu, J. S.; Zhang, Y. B.; Schatz, G. C.; Kanatzidis, M. G. Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc. Natl. Acad. Sci. USA 2016, 113, 5530–5535.

9

Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

10

Peng, W.; Feng, Y. Y.; Yan, X.; Hou, F.; Wang, L. Q.; Liang, J. Multiatom catalysts for energy-related electrocatalysis. Adv. Sustain. Syst. 2020, 4, 1900105.

11

Zhang, S.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. Photocatalytic ammonia synthesis: Recent progress and future. EnergyChem 2019, 1, 100013.

12

Wang, Z. Q.; Li, Y. H.; Yu, H. J.; Yu, Y.; Xue, H. R.; Li, X. N.; Wang, H. J.; Wang, L. Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures. ChemSusChem 2018, 11, 3480–3485.

13

Nazemi, M.; Panikkanvalappil, S. R.; El-Sayed, M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 2018, 49, 316–323.

14

Yao, Y.; Wang, H. J.; Yuan, X. Z.; Li, H.; Shao, M. H. Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Lett. 2019, 4, 1336–1341.

15

Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 µgNH3·mgcat–1. ·h–1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

16

Lee, H. K.; Koh, C. S. L.; Lee, Y. H.; Liu, C.; Phang, I. Y.; Han, X. M.; Tsung, C. K.; Ling, X. Y. Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 2018, 4, eaar3208.

17

Huang, H. H.; Xia, L.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 11427–11430.

18

Manjunatha, R.; Schechter, A. Electrochemical synthesis of ammonia using ruthenium–platinum alloy at ambient pressure and low temperature. Electrochem. Commun. 2018, 90, 96–100.

19

Kong, J. M.; Lim, A.; Yoon, C.; Jang, J. H.; Ham, H. C.; Han, J.; Nam, S.; Kim, D.; Sung, Y. E.; Choi, J. et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustainable Chem. Eng. 2017, 5, 10986–10995.

20

Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

21

Guo, W. H.; Liang, Z. B.; Zhao, J. L.; Zhu, B. J.; Cai, K. T.; Zou, R. Q.; Xu, Q. Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature. Small Methods 2018, 2, 1800204.

22

Zhang, J.; Yang, L.; Wang, H. B.; Zhu, G. L.; Wen, H.; Feng, H.; Sun, X.; Guan, X.; Wen, J. Q.; Yao, Y. D. In situ hydrothermal growth of TiO2 nanoparticles on a conductive Ti3C2Tx MXene nanosheet: A synergistically active Ti-based nanohybrid electrocatalyst for enhanced N2 reduction to NH3 at ambient conditions. Inorg. Chem. 2019, 58, 5414–5418.

23

Kang, C. S. M.; Zhang, X. Y.; MacFarlane, D. R. High nitrogen gas solubility and physicochemical properties of [C4mpyr][Efap]- fluorinated solvent mixtures. J. Phys. Chem. C 2019, 123, 21376– 21385.

24

Qu, X. M.; Shen, L. F.; Mao, Y. J.; Lin, J. X.; Li, Y. Y.; Li, G.; Zhang, Y. Y.; Jiang, Y. X.; Sun, S. G. Facile preparation of carbon shells- coated o-doped molybdenum carbide nanoparticles as high selective electrocatalysts for nitrogen reduction reaction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 31869–31877.

25

Chu, K.; Liu, Y. P.; Li, Y. B.; Wang, J.; Zhang, H. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806– 31815.

26

Wang, X. W.; Qiu, S. Y.; Feng, J. M.; Tong, Y. Y.; Zhou, F. L.; Li, Q. Y.; Song, L.; Chen, S. M.; Wu, K. H.; Su, P. P. et al. Confined Fe-Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction. Adv. Mater. 2020, 32, 2004382.

27

Tian, Y.; Xu, D. Z.; Chu, K.; Wei, Z.; Liu, W. M. Metal-free N, S co-doped graphene for efficient and durable nitrogen reduction reaction. J. Mater. Sci. 2019, 54, 9088–9097.

28

Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

29

Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on n-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

30

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

31

Kang, C. S. M.; Zhang, X. Y.; MacFarlane, D. R. Synthesis and physicochemical properties of fluorinated ionic liquids with high nitrogen gas solubility. J. Phys. Chem. C 2018, 122, 24550–24558.

32

Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem. , Int. Ed. 2020, 59, 7356–7361.

33

Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.

34

Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Layered-double-hydroxide nanosheets as efficient visible-light- driven photocatalysts for dinitrogen fixation. Adv. Mater. 2017, 29, 1703828.

35

Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J. Am. Chem. Soc. 2017, 139, 10929– 10936.

36

Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

37

Dolui, K.; Rungger, I.; Das Pemmaraju, C.; Sanvito, S. Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 2013, 88, 075420.

38

Yan, X.; Liu, D. L.; Cao, H. H.; Hou, F.; Liang, J.; Dou, S. X. Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods 2019, 3, 1800501.

39

Zhang, J.; Tian, X. Y.; Liu, M. J.; Guo, H.; Zhou, J. D.; Fang, Q. Y.; Liu, Z.; Wu, Q.; Lou, J. Cobalt-modulated molybdenum-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. J. Am. Chem. Soc. 2019, 141, 19269–19275.

40

Yan, M.; Hua, Y. Q.; Zhu, F. F.; Sun, L.; Gu, W.; Shi, W. D. Constructing nitrogen doped graphene quantum dots-ZnNb2O6/g-C3N4 catalysts for hydrogen production under visible light. Appl. Catal. B 2017, 206, 531–537.

41

Zhao, J.; Zhao, J. X.; Cai, Q. H. Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis. Phys. Chem. Chem. Phys. 2018, 20, 9248–9255.

42

Zheng, T.; Li, G. D.; Dong, J. H.; Sun, Q. Q.; Meng, X. G. Self- assembled Mn-doped MoS2 hollow nanotubes with significantly enhanced sodium storage for high-performance sodium-ion batteries. Inorg. Chem. Front. 2018, 5, 1587–1593.

43

Azcatl, A.; Qin, X. Y.; Prakash, A.; Zhang, C. X.; Cheng, L. X.; Wang, Q. X.; Lu, N.; Kim, M. J.; Kim, J.; Cho, K. et al. Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Lett. 2016, 16, 5437–5443.

44

Tang, B. S.; Yu, Z. G.; Seng, H. L.; Zhang, N. D.; Liu, X. X.; Zhang, Y. W.; Yang, W. F.; Gong, H. Simultaneous edge and electronic control of MoS2 nanosheets through Fe doping for an efficient oxygen evolution reaction. Nanoscale 2018, 10, 20113–20119.

45

Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon- nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.

46

Cheng, H.; Cui, P. X.; Wang, F. R.; Ding, L. X.; Wang, H. H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem., Int. Ed. 2019, 58, 15541–15547.

47

Wang, F. L.; Chen, P.; Feng, Y. P.; Xie, Z. J.; Liu, Y.; Su, Y. H.; Zhang, Q. X.; Wang, Y. F.; Yao, K.; Lv, W. Y. et al. Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible- light photocatalytic activity for the degradation of indomethacin. Appl. Catal. B 2017, 207, 103–113.

Nano Research
Pages 4093-4099
Cite this article:
Niu L, Wang D, Xu K, et al. Tuning the performance of nitrogen reduction reaction by balancing the reactivity of N2 and the desorption of NH3. Nano Research, 2021, 14(11): 4093-4099. https://doi.org/10.1007/s12274-021-3348-5
Topics:

816

Views

37

Crossref

38

Web of Science

37

Scopus

4

CSCD

Altmetrics

Received: 21 November 2020
Revised: 28 December 2020
Accepted: 20 January 2021
Published: 16 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return