AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Crystalline all-inorganic lead-free Cs3Sb2I9 perovskite microplates with ultra-fast photoconductive response and robust thermal stability

Sujit Kumer Shil1,3,§Fei Wang2,4,5,§( )Zhengxun Lai2You Meng2Yunpeng Wang4Dongxu Zhao4Mohammad Kamal Hossain1,6Kingsley O. Egbo1Ying Wang1Kin Man Yu1( )Johnny C. Ho2,5( )
Department of Physics City University of Hong Kong, KowloonHong Kong China
Department of Materials Science and Engineering City University of Hong Kong, KowloonHong Kong China
Department of Physics Khulna University of Engineering & Technology (KUET)Khulna 9203 Bangladesh
State Key Laboratory of Luminescence and Applications Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences3888 Dongnanhu Road, Changchun 130021 China
State Key Laboratory of Terahertz and Millimeter Waves City University of Hong Kong, KowloonHong Kong China
Department of Physics Comilla University, KotbariComilla 3506 Bangladesh

§ Sujit Kumer Shil and Fei Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Hybrid organolead halide perovskites have attracted tremendous attention due to their recent success as high efficiency solar cell materials and their fascinating material properties uniquely suitable for optoelectronic devices. However, the poor ambient and operational stability as well as the concern of lead toxicity greatly hamper their practical utilization. In this work, crystalline, all-inorganic and lead-free Cs3Sb2I9 perovskite microplates are successfully synthesized by a two-step chemical vapor deposition method. As compared with other typical lead-free perovskite materials, the Cs3Sb2I9 microplates demonstrate excellent optoelectronic properties, including substantial enhancements in the Stokes shift, exciton binding energy and electron-phonon coupling. Simple photoconductive devices fabricated using these microplates exhibit an ultra-fast response with the rise and decay time constants down to 96 and 58 μs, respectively. This respectable photoconductor performance can be regarded as a record among all the lead-free perovskite materials. Importantly, these photodetectors show superior thermal stability in a wide temperature range, capable to function reversibly between 80 and 380 K, indicating their robustness to operate under both low and high temperatures. All these results evidently suggest the technological potential of inorganic lead-free Cs3Sb2I9 perovskite microplates for next-generation high-performance optoelectronic devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3351_MOESM1_ESM.pdf (2.4 MB)

References

1

Li, L.; Chen, H. Y.; Fang, Z. M.; Meng, X. Y.; Zuo, C. T.; Lv, M. L.; Tian, Y. Z.; Fang, Y.; Xiao, Z.; Shan, C. X. et al. An electrically modulated single-color/dual-color imaging photodetector. Adv. Mater. 2020, 32, 1907257.

2

Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403–433.

3

Xu, Y. L.; Lin, Q. Q. Photodetectors based on solution-processable semiconductors: Recent advances and perspectives. Appl. Phys. Rev. 2020, 7, 011315.

4

Zhou, Q. T.; Park, J. G.; Nie, R. M.; Thokchom, A. K.; Ha, D.; Pan, J.; Seok, S. I.; Kim, T. Nanochannel-assisted perovskite nanowires: From growth mechanisms to photodetector applications. ACS Nano 2018, 12, 8406–8414.

5

Yang, B.; Li, Y. J.; Tang, Y. X.; Mao, X.; Luo, C.; Wang, M. S.; Deng, W. Q.; Han, K. L. Constructing sensitive and fast lead-free single-crystalline perovskite photodetectors. J. Phys. Chem. Lett. 2018, 9, 3087–3092.

6

Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373– 7380.

7

Dou, L. T.; Yang, Y. M.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

8

Liu, J. Y.; Xue, Y. Z.; Wang, Z. Y.; Xu, Z. Q.; Zheng, C. X.; Weber, B.; Song, J. C.; Wang, Y. S.; Lu, Y. R.; Zhang, Y. P. et al. Two- dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application. ACS Nano 2016, 10, 3536–3542.

9

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

10

Wang, K.; Li, Z. Z.; Zhou, F. G.; Wang, H. R.; Bian, H.; Zhang, H.; Wang, Q.; Jin, Z. W.; Ding, L. M.; Liu, S. Ruddlesden–popper 2D component to stabilize γ-CsPbI3 perovskite phase for stable and efficient photovoltaics. Adv. Energy Mater. 2019, 9, 1902529.

11

Wang, H. R.; Bian, H.; Jin, Z. W.; Zhang, H.; Liang, L.; Wen, J. L.; Wang, Q.; Ding, L. M.; Liu, S. F. Cesium lead mixed-halide perovskites for low-energy loss solar cells with efficiency beyond 17%. Chem. Mater. 2019, 31, 6231–6238.

12

Li, Z. Z.; Zhou, F. G.; Wang, Q.; Ding, L. M.; Jin, Z. W. Approaches for thermodynamically stabilized CsPbI3 solar cells. Nano Energy 2020, 71, 104634.

13

Bian, H.; Wang, H. R.; Li, Z. Z.; Zhou, F. G.; Xu, Y. K.; Zhang, H.; Wang, Q.; Ding, L. M.; Liu, S. F.; Jin, Z. W. Unveiling the effects of hydrolysis-derived DMAI/DMAPbIx intermediate compound on the performance of CsPbI3 solar cells. Adv. Sci. 2020, 7, 1902868.

14

Wang, F.; Mei, J. J.; Wang, Y. P.; Zhang, L. G.; Zhao, H. F.; Zhao, D. X. Fast photoconductive responses in organometal halide perovskite photodetectors. ACS Appl. Mater. Interfaces 2016, 8, 2840–2846.

15

Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. B. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 2016, 9, 3406–3410.

16

Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477.

17

Yang, J. L.; Siempelkamp, B. D.; Liu, D. Y.; Kelly, T. L. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 2015, 9, 1955–1963.

18

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

19

Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

20

Yettapu, G. R.; Talukdar, D.; Sarkar, S.; Swarnkar, A.; Nag, A.; Ghosh, P.; Mandal, P. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 2016, 16, 4838–4848.

21

Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand- mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 2016, 10, 3648–3657.

22

Pradhan, B.; Kumar, G. S.; Sain, S.; Dalui, A.; Ghorai, U. K.; Pradhan, S. K.; Acharya, S. Size tunable cesium antimony chloride perovskite nanowires and nanorods. Chem. Mater. 2018, 30, 2135– 2142.

23

Tong, X. W.; Kong, W. Y.; Wang, Y. Y.; Zhu, J. M.; Luo, L. B.; Wang, Z. H. High-performance red-light photodetector based on lead- free bismuth halide perovskite film. ACS Appl. Mater. Interfaces 2017, 9, 18977–18985.

24

Chen, J.; Luo, Z. Y.; Fu, Y. P.; Wang, X. X.; Czech, K. J.; Shen, S. H.; Guo, L. J.; Wright, J. C.; Pan, A. L.; Jin, S. Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X = Br, I) nanowires. ACS Energy Lett. 2019, 4, 1045–1052.

25

Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071–2083.

26

Hoefler, S. F.; Trimmel, G.; Rath, T. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. Monatsh. Chem. 2017, 148, 795–826.

27

Parrott, E. S.; Milot, R. L.; Stergiopoulos, T.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Effect of structural phase transition on charge- carrier lifetimes and defects in CH3NH3SnI3 perovskite. J. Phys. Chem. Lett. 2016, 7, 1321–1326.

28

Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494.

29

Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.

30

Hebig, J. C.; Kühn, I.; Flohre, J.; Kirchartz, T. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. 2016, 1, 309–314.

31

Chatterjee, S.; Pal, A. J. Tin(IV) Substitution in (CH3NH3)3Sb2I9: Toward low-band-gap defect-ordered hybrid perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 35194–35205.

32

Umar, F.; Zhang, J.; Jin, Z. X.; Muhammad, I.; Yang, X. K.; Deng, H.; Jahangeer, K.; Hu, Q. S.; Song, H. S.; Tang, J. Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method. Adv. Opt. Mater. 2019, 7, 1801368.

33

Zuo, C. T.; Ding, L. M. Lead-free perovskite materials (NH4)3Sb2IxBr9-x. Angew. Chem., Int. Ed. 2017, 56, 6528–6532.

34

Ma, Z. Z.; Shi, Z. F.; Yang, D. W.; Zhang, F.; Li, S.; Wang, L. T.; Wu, D.; Zhang, Y. T.; Na, G. R.; Zhang, L. J. et al. Electrically- driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett. 2020, 5, 385–394.

35

Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X. K.; Khan, J.; Tang, J.; Song, H. S. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano 2017, 11, 9294–9302.

36

Singh, A.; Boopathi, K. M.; Mohapatra, A.; Chen, Y. F.; Li, G.; Chu, C. W. Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9. ACS Appl. Mater. Interfaces 2018, 10, 2566–2573.

37

Correa-Baena, J. P.; Nienhaus, L.; Kurchin, R. C.; Shin, S. S.; Wieghold, S.; Hartono, N. T. P.; Layurova, M.; Klein, N. D.; Poindexter, J. R.; Polizzotti, A. et al. A-site cation in inorganic A3Sb2I9 perovskite influences structural dimensionality, exciton binding energy, and solar cell performance. Chem. Mater. 2018, 30, 3734–3742.

38

Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.

39

Li, J.; Luo, L. H.; Huang, H. W.; Ma, C.; Ye, Z. Z.; Zeng, J.; He, H. P. 2D behaviors of excitons in cesium lead halide perovskite nano­platelets. J. Phys. Chem. Lett. 2017, 8, 1161–1168.

40

Yang, Z.; Wang, M. Q.; Qiu, H. W.; Yao, X.; Lao, X. Z.; Xu, S. J.; Lin, Z. H.; Sun, L. Y.; Shao, J. Y. Engineering the exciton dissociation in quantum-confined 2D CsPbBr3 nanosheet films. Adv. Funct. Mater. 2018, 28, 1705908.

41

Jain, S. M.; Phuyal, D.; Davies, M. L.; Li, M.; Philippe, B.; De Castro, C.; Qiu, Z.; Kim, J.; Watson, T.; Tsoi, W. C. et al. An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 2018, 49, 614–624.

42

Yang, B.; Yin, L. X.; Niu, G. D.; Yuan, J. H.; Xue, K. H.; Tan, Z. F.; Miao, X. S.; Niu, M.; Du, X. Y.; Song, H. S. et al. Lead-free halide Rb2CuBr3 as sensitive X-Ray scintillator. Adv. Mater. 2019, 31, 1904711.

43

Liu, M.; Zhong, G. H.; Yin, Y. M.; Miao, J. S.; Li, K.; Wang, C. Q.; Xu, X. R.; Shen, C.; Meng, H. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 2017, 4, 1700335.

44

Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem., Int. Ed. 2015, 54, 15424–15428.

45

Jun, T.; Sim, K.; Iimura, S.; Sasase, M.; Kamioka, H.; Kim, J.; Hosono, H. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 2018, 30, 1804547.

46

Lian, L. Y.; Zheng, M. Y.; Zhang, W. Z.; Yin, L. X.; Du, X. Y.; Zhang, P.; Zhang, X. W.; Gao, J. B.; Zhang, D. L.; Gao, L. et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Adv. Sci. 2020, 7, 2000195.

47

Ma, Z. Z.; Shi, Z. F.; Qin, C. C.; Cui, M. H.; Yang, D. W.; Wang, X. J.; Wang, L. T.; Ji, X. Z.; Chen, X.; Sun, J. L. et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano 2020, 14, 4475–4486.

48

Li, Y.; Shi, Z. F.; Wang, L. T.; Chen, Y. C.; Liang, W. Q.; Wu, D.; Li, X. J.; Zhang, Y.; Shan, C. X.; Fang, X. S. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors. Mater. Horiz. 2020, 7, 1613–1622.

49

Xie, B. M.; Xie, R. H.; Zhang, K.; Yin, Q. W.; Hu, Z. C.; Yu, G.; Huang, F.; Cao, Y. Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nat. Commun. 2020, 11, 2871.

50

Gong, Y. P.; Liu, Q. F.; Gong, M. G.; Wang, T.; Zeng, G. G.; Chan, W. L.; Wu, J. High-performance photodetectors based on effective exciton dissociation in protein-adsorbed multiwalled carbon nanotube nanohybrids. Adv. Opt. Mater. 2017, 5, 1600478.

51

McCall, K. M.; Stoumpos, C. C.; Kostina, S. S.; Kanatzidis, M. G.; Wessels, B. W. Strong electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater. 2017, 29, 4129–4145.

52

Toyozawa, Y. Further contribution to the theory of the line-shape of the exciton absorption band. Prog. Theor. Phys. 1962, 27, 89–104.

53

Dawson, K. R; Pooley, D. F band absorption in alkali halides as a function of temperature. Phys. Status Solidi B 1969, 35, 95–105.

54

Leung, C. H.; Song, K. S. On the luminescence quenching of F centres in alkali halides. Solid State Commun. 1980, 33, 907–910.

55

Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953, 92, 1324.

56

Masada, S.; Yamada, T.; Tahara, H.; Hirori, H.; Saruyama, M.; Kawawaki, T.; Sato, R.; Teranishi, T.; Kanemitsu, Y. Effect of a-site cation on photoluminescence spectra of single lead bromide perovskite nanocrystals. Nano Lett. 2020, 20, 4022–4028.

57

Van Roosbroeck, W.; Shockley, W. Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 1954, 94, 1558– 1560.

58

Olson, C. G.; Lynch, D. W. Longitudinal-optical-phonon-plasmon coupling in GaAs. Phys. Rev. 1969, 177, 1231–1234.

59

Konstantatos, G.; Clifford, J.; Levina, L.; Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nat. Photon. 2007, 1, 531–534.

60

Liu, Y. C.; Zhang, Y. X.; Yang, Z.; Ye, H. C.; Feng, J. S.; Xu, Z.; Zhang, X.; Munir, R.; Liu, J.; Zuo, P. et al. Multi-inch single- crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun. 2018, 9, 5302.

61

Waleed, A.; Tavakoli, M. M.; Gu, L. L.; Wang, Z. Y.; Zhang, D. Q.; Manikandan, A.; Zhang, Q. P.; Zhang, R. J.; Chueh, Y. L.; Fan, Z. Y. Lead-free perovskite nanowire array photodetectors with drastically improved stability in nanoengineering templates. Nano Lett. 2017, 17, 523–530.

62

Ji, C. M.; Wang, P.; Wu, Z. Y.; Sun, Z. H.; Li, L. N.; Zhang, J.; Hu, W. D.; Hong, M. C.; Luo, J. H. Inch-size single crystal of a lead- free organic-inorganic hybrid perovskite for high-performance photodetector. Adv. Funct. Mater. 2018, 28, 1705467.

63

Lei, L. Z.; Shi, Z. F.; Li, Y.; Ma, Z. Z.; Zhang, F.; Xu, T. T.; Tian, Y. T.; Wu, D.; Li, X. J.; Du, G. T. High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin films. J. Mater. Chem. C 2018, 6, 7982–7988.

64

Zhou, J.; Luo, J. J.; Rong, X. M.; Wei, P. J.; Molokeev, M. S.; Huang, Y.; Zhao, J.; Liu, Q. L.; Zhang, X. W.; Tang, J. et al. Lead-free perovskite derivative Cs2SnCl6−xBrx single crystals for narrowband photodetectors. Adv. Opt. Mater. 2019, 7, 1900139.

65

Zhang, Z. X.; Li, C.; Lu, Y.; Tong, X. W.; Liang, F. X.; Zhao, X. Y.; Wu, D.; Xie, C.; Luo, L. B. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. J. Phys. Chem. Lett. 2019, 10, 5343–5350.

66

Fang, C.; Wang, H. Z.; Shen, Z. X.; Shen, H. Z.; Wang, S.; Ma, J. Q.; Wang, J.; Luo, H. M.; Li, D. H. High-performance photodetectors based on lead-free 2D ruddlesden-popper perovskite/MoS2 hetero­structures. ACS Appl. Mater. Interfaces 2019, 11, 8419–8427.

67

Li, Y.; Shi, Z. F.; Lei, L. Z.; Li, S.; Yang, D. W.; Wu, D.; Xu, T. T.; Tian, Y. Z.; Lu, Y. J.; Wang, Y. et al. Ultrastable lead-free double perovskite photodetectors with imaging capability. Adv. Mater. Interfaces 2019, 6, 1900188.

68

Zheng, Z.; Hu, Q. S.; Zhou, H. Z.; Luo, P.; Nie, A. M.; Zhu, H. M.; Gan, L.; Zhuge, F. W.; Ma, Y.; Song, H. S. et al. Submillimeter and lead-free Cs3Sb2Br9 perovskite nanoflakes: Inverse temperature crystallization growth and application for ultrasensitive photodetectors. Nanoscale Horiz. 2019, 4, 1372–1379.

69

Li, W. G.; Wang, X. D.; Liao, J. F.; Jiang, Y.; Kuang, D. B. Enhanced on–off ratio photodetectors based on lead-free Cs3Bi2I9 single crystal thin films. Adv. Funct. Mater. 2020, 30, 1909701.

70

Krishnaiah, M.; Khan, M. I.; Kumar, A.; Jin, S. H. Impact of CsI concentration, relative humidity, and annealing temperature on lead-free Cs2SnI6 perovskites: Toward visible light photodetectors application. Mater. Lett. 2020, 269, 127675.

71

Zhang, W. C.; Sui, Y.; Kou, B.; Peng, Y.; Wu, Z. Y.; Luo, J. H. Large-area exfoliated lead-free perovskite-derivative single-crystalline membrane for flexible low-defect photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 9141–9149.

72

Tian, C. C.; Wang, F.; Wang, Y. P.; Yang, Z.; Chen, X. J.; Mei, J. J.; Liu, H. Z.; Zhao, D. X. Chemical vapor deposition method grown all-inorganic perovskite microcrystals for self-powered photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 15804–15812.

Nano Research
Pages 4116-4124
Cite this article:
Shil SK, Wang F, Lai Z, et al. Crystalline all-inorganic lead-free Cs3Sb2I9 perovskite microplates with ultra-fast photoconductive response and robust thermal stability. Nano Research, 2021, 14(11): 4116-4124. https://doi.org/10.1007/s12274-021-3351-x
Topics:

780

Views

46

Crossref

46

Web of Science

47

Scopus

0

CSCD

Altmetrics

Received: 21 October 2020
Revised: 16 January 2021
Accepted: 20 January 2021
Published: 13 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return