Graphical Abstract

Safe and long lifespan batteries facilitate the development of portable electronics and electric vehicles. Owing to the low-cost, naturally abundance, and trivalent charge carrier of aluminum with the highest theoretical volumetric capacity, rechargeable aqueous aluminum-ion-based batteries are considered as promising next-generation secondary batteries. However, traditional electrolytes and frequent collapse of the host structure of electrode materials greatly jeopardize the cycle stability of the batteries. Here, we develop a novel hydrogel-based electrolyte coupled with stable layered intercalation electrodes for the first time to fabricate a highly safe and flexible rechargeable hybrid Al3+/H+ battery. The as-fabricated hybrid-ion battery (HIB) delivers a high specific capacity of 125 mAh∙g−1 at 0.1 A∙g−1 and exhibits an unprecedented super long-term cycling stability with no capacity fading over 10, 000 cycles at 2 A∙g−1. In addition, the hydrogel-based electrolyte possesses smart function of thermoresponsive switching, which can effectively prevent thermal runaway for the batteries. The unprecedented long cycle stability, highly intrinsic safety as well as low-cost indicate that the flexible aqueous HIBs are promising for applications.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
Sun, Y.; Guo, S. H.; Zhou, H. S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 2019, 12, 825–840.
Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.
Eftekhari, A.; Jian, Z. L.; Ji, X. L. Potassium secondary batteries. ACS Appl. Mater. Inter. 2017, 9, 4404–4419.
Canepa, P.; Gautam, G. S.; Hannah, D. C.; Malik, R.; Liu, M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Odyssey of multivalent cathode materials: Open questions and future challenges. Chem. Rev. 2017, 117, 4287–4341.
Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279.
Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.
Wu, C.; Gu, S. C.; Zhang, Q. H.; Bai, Y.; Li, M.; Yuan, Y. F.; Wang, H. L.; Liu, X. Y.; Yuan, Y. X.; Zhu, N. et al. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 2019, 10, 73.
Zhao, Q.; Zachman, M. J.; Al Sadat, W. I.; Zheng, J. X.; Kourkoutis, L. F.; Archer, L. Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 2018, 4, eaau8131.
Elia, G. A.; Marquardt, K.; Hoeppner, K.; Fantini, S.; Lin, R. Y.; Knipping, E.; Peters, W.; Drillet, J. F.; Passerini, S.; Hahn, R. An overview and future perspectives of aluminum batteries. Adv. Mater. 2016, 28, 7564–7579.
Muldoon, J.; Bucur, C. B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 2014, 114, 11683–11720.
VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017, 11, 11135–11144.
Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.
Wang, S.; Yu, Z. J.; Tu, J. G.; Wang, J. X.; Tian, D. H.; Liu, Y. J.; Jiao, S. Q. A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/ Ni3S2@graphene. Adv. Energy Mater. 2016, 6, 1600137.
Huang, Y.; Li, Z.; Pei, Z. X.; Liu, Z. X.; Li, H. F.; Zhu, M. S.; Fan, J.; Dai, Q. B.; Zhang, M. D.; Dai, L. M. et al. Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: The role of a sodium polyacrylate hydrogel electrolyte. Adv. Energy Mater. 2018, 8, 1802288.
Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.
Wang, Z. F.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Ruan, Z. H.; Ma, L. T.; Yang, Q.; Wang, D. H.; Zhi, C. Y. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 2018, 28, 1804560.
Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y. An intrinsically self-healing NiCo| | Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem., Int. Ed. 2018, 57, 9810–9813.
Jiang, X. C.; Xiang, N. P.; Wang, J. Q.; Zhao, Y. L.; Hou, L. X. Preparation and characterization of hybrid double network chitosan/poly(acrylic amide-acrylic acid) high toughness hydrogel through Al3+ crosslinking. Carbohyd. Polym. 2017, 173, 701–706.
Wang, Q. S.; Ping, P.; Zhao, X. J.; Chu, G. Q.; Sun, J. H.; Chen, C. H. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224.
Finegan, D. P.; Scheel, M.; Robinson, J. B.; Tjaden, B.; Hunt, I.; Mason, T. J.; Millichamp, J.; Di Michiel, M.; Offer, G. J.; Hinds, G. et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 2015, 6, 6924.
Koch, S.; Fill, A.; Birke, K. P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J. Power Sources 2018, 398, 106–112.
Braga, M. H.; Grundish, N. S.; Murchison, A. J.; Goodenough, J. B. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 2017, 10, 331–336.
Mo, F. N.; Li, H. F.; Pei, Z. X.; Liang, G. J.; Ma, L. T.; Yang, Q.; Wang, D. H.; Huang, Y.; Zhi, C. Y. A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Sci. Bull. 2018, 63, 1077–1086.
Chen, Z.; Hsu, P. C.; Lopez, J.; Li, Y. Z.; To, J. W. F.; Liu, N.; Wang, C.; Andrews, S. C.; Liu, J.; Cui, Y. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 2016, 1, 15009.
Yang, Y.; Yu, D. D.; Wang, H.; Guo, L. Smart electrochemical energy storage devices with self-protection and self-adaptation abilities. Adv. Mater. 2017, 29, 1703040.
Feng, X. M.; Ai, X. P.; Yang, H. X. A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochem. Commun. 2004, 6, 1021–1024.
Yan, C. S.; Lv, C.; Wang, L. G.; Cui, W.; Zhang, L. Y.; Dinh, K. N.; Tan, H. T.; Wu, C.; Wu, T. P.; Ren, Y. et al. Architecting a stable high-energy aqueous Al-ion battery. J. Am. Chem. Soc. 2020, 142, 15295–15304.
Nakato, T.; Furumi, Y.; Terao, N.; Okuhara, T. Reaction of layered vanadium phosphorus oxides, VOPO4∙2H2O and VOHPO4∙0.5H2O, with amines and formation of exfoliative intercalation compounds. J. Mater. Chem. 2000, 10, 737–743.
Shi, H. Y.; Song, Y.; Qin, Z. M.; Li, C. C.; Guo, D.; Liu, X. X.; Sun, X. Q. Inhibiting VOPO4∙xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities. Angew. Chem., Int. Ed. 2019, 58, 16057–16061.
Li, Y. H.; Sun, H.; Cheng, X. P.; Zhang, Y. F.; Zhao, K. J. In-situ TEM experiments and first-principles studies on the electrochemical and mechanical behaviors of α-MoO3 in Li-ion batteries. Nano Energy 2016, 27, 95–102.
Kufian, M. Z.; Majid, S. R.; Arof, A. K. Dielectric and conduction mechanism studies of PVA-orthophosphoric acid polymer electrolyte. Ionics 2007, 13, 231–234.
Peng, X.; Liu, H. L.; Yin, Q.; Wu, J. C.; Chen, P. Z.; Zhang, G. Z.; Liu, G. M.; Wu, C. Z.; Xie, Y. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat. Commun. 2016, 7, 11782.
Wan, F.; Zhang, Y.; Zhang, L. L.; Liu, D. B.; Wang, C. D.; Song, L.; Niu, Z. Q.; Chen, J. Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 7062–7067.
Wang, F. X.; Yu, F.; Wang, X. W.; Chang, Z.; Fu, L. J.; Zhu, Y. S.; Wen, Z. B.; Wu, Y. P.; Huang, W. Aqueous rechargeable zinc/aluminum ion battery with good cycling performance. ACS Appl. Mater. Inter. 2016, 8, 9022–9029.
Wang, P. P.; Chen, Z.; Ji, Z. Y.; Feng, Y. P.; Wang, J. Q.; Liu, J.; Hu, M. M.; Wang, H.; Gan, W.; Huang, Y. A flexible aqueous Al ion rechargeable full battery. Chem. Eng. J. 2019, 373, 580–586.
Holland, A.; Mckerracher, R. D.; Cruden, A.; Wills, R. G. A. An aluminium battery operating with an aqueous electrolyte. J. Appl. Electrochem. 2018, 48, 243–250.
Pan, W. D.; Wang, Y. F.; Zhang, Y. G.; Kwok, H. Y. H.; Wu, M. Y.; Zhao, X. L.; Leung, D. Y. C. A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. J. Mater. Chem. A 2019, 7, 17420–17425.
Ji, X.; Chen, J.; Wang, F.; Sun, W.; Ruan, Y. J.; Miao, L.; Jiang, J. J.; Wang, C. S. Water-activated VOPO4 for magnesium ion batteries. Nano Lett. 2018, 18, 6441–6448.
Gu, S. C.; Wang, H. L.; Wu, C.; Bai, Y.; Li, H.; Wu, F. Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 2017, 6, 9–17.
Gao, Y. N.; Yang, H. Y.; Wang, X. R.; Bai, Y.; Zhu, N.; Guo, S. N.; Suo, L. M.; Li, H.; Xu, H. J.; Wu, C. The compensation effect mechanism of Fe-Ni mixed prussian blue analogues in aqueous rechargeable aluminum-ion batteries. ChemSusChem 2020, 13, 732–740.
Huang, J. H.; Wang, Z.; Hou, M. Y.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906.
Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.
Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.