AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10, 000 ultralong cycle stability and smart switching capability

Hua Wang1,2Panpan Wang1,2Zhenyuan Ji1,2Zhe Chen1,2Jiaqi Wang1,2Wei Ling1,2Jie Liu1,2Mengmeng Hu1,2Chunyi Zhi3Yan Huang1,2,4( )
State Key Laboratory of Advanced Welding and Joining Harbin Institute of TechnologyShenzhen 518055 China
Flexible Printed Electronic Technology Center Harbin Institute of TechnologyShenzhen 518055 China
School of Materials Science and Engineering City University of Hong KongHong Kong 999077 China
School of Materials Science and Engineering Harbin Institute of TechnologyShenzhen 518055 China
Show Author Information

Graphical Abstract

Abstract

Safe and long lifespan batteries facilitate the development of portable electronics and electric vehicles. Owing to the low-cost, naturally abundance, and trivalent charge carrier of aluminum with the highest theoretical volumetric capacity, rechargeable aqueous aluminum-ion-based batteries are considered as promising next-generation secondary batteries. However, traditional electrolytes and frequent collapse of the host structure of electrode materials greatly jeopardize the cycle stability of the batteries. Here, we develop a novel hydrogel-based electrolyte coupled with stable layered intercalation electrodes for the first time to fabricate a highly safe and flexible rechargeable hybrid Al3+/H+ battery. The as-fabricated hybrid-ion battery (HIB) delivers a high specific capacity of 125 mAh∙g−1 at 0.1 A∙g−1 and exhibits an unprecedented super long-term cycling stability with no capacity fading over 10, 000 cycles at 2 A∙g−1. In addition, the hydrogel-based electrolyte possesses smart function of thermoresponsive switching, which can effectively prevent thermal runaway for the batteries. The unprecedented long cycle stability, highly intrinsic safety as well as low-cost indicate that the flexible aqueous HIBs are promising for applications.

Electronic Supplementary Material

Download File(s)
12274_2021_3356_MOESM1_ESM.pdf (4.2 MB)

References

1

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

2

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

3

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

4

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

5

Sun, Y.; Guo, S. H.; Zhou, H. S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 2019, 12, 825–840.

6

Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.

7

Eftekhari, A.; Jian, Z. L.; Ji, X. L. Potassium secondary batteries. ACS Appl. Mater. Inter. 2017, 9, 4404–4419.

8

Canepa, P.; Gautam, G. S.; Hannah, D. C.; Malik, R.; Liu, M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Odyssey of multivalent cathode materials: Open questions and future challenges. Chem. Rev. 2017, 117, 4287–4341.

9

Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279.

10

Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480–2501.

11

Wu, C.; Gu, S. C.; Zhang, Q. H.; Bai, Y.; Li, M.; Yuan, Y. F.; Wang, H. L.; Liu, X. Y.; Yuan, Y. X.; Zhu, N. et al. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun. 2019, 10, 73.

12

Zhao, Q.; Zachman, M. J.; Al Sadat, W. I.; Zheng, J. X.; Kourkoutis, L. F.; Archer, L. Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 2018, 4, eaau8131.

13

Elia, G. A.; Marquardt, K.; Hoeppner, K.; Fantini, S.; Lin, R. Y.; Knipping, E.; Peters, W.; Drillet, J. F.; Passerini, S.; Hahn, R. An overview and future perspectives of aluminum batteries. Adv. Mater. 2016, 28, 7564–7579.

14

Muldoon, J.; Bucur, C. B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 2014, 114, 11683–11720.

15

VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017, 11, 11135–11144.

16

Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.

17

Wang, S.; Yu, Z. J.; Tu, J. G.; Wang, J. X.; Tian, D. H.; Liu, Y. J.; Jiao, S. Q. A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/ Ni3S2@graphene. Adv. Energy Mater. 2016, 6, 1600137.

18

Huang, Y.; Li, Z.; Pei, Z. X.; Liu, Z. X.; Li, H. F.; Zhu, M. S.; Fan, J.; Dai, Q. B.; Zhang, M. D.; Dai, L. M. et al. Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: The role of a sodium polyacrylate hydrogel electrolyte. Adv. Energy Mater. 2018, 8, 1802288.

19

Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

20

Wang, Z. F.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Ruan, Z. H.; Ma, L. T.; Yang, Q.; Wang, D. H.; Zhi, C. Y. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 2018, 28, 1804560.

21

Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y. An intrinsically self-healing NiCo| | Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem., Int. Ed. 2018, 57, 9810–9813.

22

Jiang, X. C.; Xiang, N. P.; Wang, J. Q.; Zhao, Y. L.; Hou, L. X. Preparation and characterization of hybrid double network chitosan/poly(acrylic amide-acrylic acid) high toughness hydrogel through Al3+ crosslinking. Carbohyd. Polym. 2017, 173, 701–706.

23

Wang, Q. S.; Ping, P.; Zhao, X. J.; Chu, G. Q.; Sun, J. H.; Chen, C. H. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224.

24

Finegan, D. P.; Scheel, M.; Robinson, J. B.; Tjaden, B.; Hunt, I.; Mason, T. J.; Millichamp, J.; Di Michiel, M.; Offer, G. J.; Hinds, G. et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 2015, 6, 6924.

25

Koch, S.; Fill, A.; Birke, K. P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway. J. Power Sources 2018, 398, 106–112.

26

Braga, M. H.; Grundish, N. S.; Murchison, A. J.; Goodenough, J. B. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 2017, 10, 331–336.

27

Mo, F. N.; Li, H. F.; Pei, Z. X.; Liang, G. J.; Ma, L. T.; Yang, Q.; Wang, D. H.; Huang, Y.; Zhi, C. Y. A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. Sci. Bull. 2018, 63, 1077–1086.

28

Chen, Z.; Hsu, P. C.; Lopez, J.; Li, Y. Z.; To, J. W. F.; Liu, N.; Wang, C.; Andrews, S. C.; Liu, J.; Cui, Y. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 2016, 1, 15009.

29

Yang, Y.; Yu, D. D.; Wang, H.; Guo, L. Smart electrochemical energy storage devices with self-protection and self-adaptation abilities. Adv. Mater. 2017, 29, 1703040.

30

Feng, X. M.; Ai, X. P.; Yang, H. X. A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries. Electrochem. Commun. 2004, 6, 1021–1024.

31

Yan, C. S.; Lv, C.; Wang, L. G.; Cui, W.; Zhang, L. Y.; Dinh, K. N.; Tan, H. T.; Wu, C.; Wu, T. P.; Ren, Y. et al. Architecting a stable high-energy aqueous Al-ion battery. J. Am. Chem. Soc. 2020, 142, 15295–15304.

32

Nakato, T.; Furumi, Y.; Terao, N.; Okuhara, T. Reaction of layered vanadium phosphorus oxides, VOPO4∙2H2O and VOHPO4∙0.5H2O, with amines and formation of exfoliative intercalation compounds. J. Mater. Chem. 2000, 10, 737–743.

33

Shi, H. Y.; Song, Y.; Qin, Z. M.; Li, C. C.; Guo, D.; Liu, X. X.; Sun, X. Q. Inhibiting VOPO4xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities. Angew. Chem., Int. Ed. 2019, 58, 16057–16061.

34

Li, Y. H.; Sun, H.; Cheng, X. P.; Zhang, Y. F.; Zhao, K. J. In-situ TEM experiments and first-principles studies on the electrochemical and mechanical behaviors of α-MoO3 in Li-ion batteries. Nano Energy 2016, 27, 95–102.

35

Kufian, M. Z.; Majid, S. R.; Arof, A. K. Dielectric and conduction mechanism studies of PVA-orthophosphoric acid polymer electrolyte. Ionics 2007, 13, 231–234.

36

Peng, X.; Liu, H. L.; Yin, Q.; Wu, J. C.; Chen, P. Z.; Zhang, G. Z.; Liu, G. M.; Wu, C. Z.; Xie, Y. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat. Commun. 2016, 7, 11782.

37

Wan, F.; Zhang, Y.; Zhang, L. L.; Liu, D. B.; Wang, C. D.; Song, L.; Niu, Z. Q.; Chen, J. Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 7062–7067.

38

Wang, F. X.; Yu, F.; Wang, X. W.; Chang, Z.; Fu, L. J.; Zhu, Y. S.; Wen, Z. B.; Wu, Y. P.; Huang, W. Aqueous rechargeable zinc/aluminum ion battery with good cycling performance. ACS Appl. Mater. Inter. 2016, 8, 9022–9029.

39

Wang, P. P.; Chen, Z.; Ji, Z. Y.; Feng, Y. P.; Wang, J. Q.; Liu, J.; Hu, M. M.; Wang, H.; Gan, W.; Huang, Y. A flexible aqueous Al ion rechargeable full battery. Chem. Eng. J. 2019, 373, 580–586.

40

Holland, A.; Mckerracher, R. D.; Cruden, A.; Wills, R. G. A. An aluminium battery operating with an aqueous electrolyte. J. Appl. Electrochem. 2018, 48, 243–250.

41

Pan, W. D.; Wang, Y. F.; Zhang, Y. G.; Kwok, H. Y. H.; Wu, M. Y.; Zhao, X. L.; Leung, D. Y. C. A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. J. Mater. Chem. A 2019, 7, 17420–17425.

42

Ji, X.; Chen, J.; Wang, F.; Sun, W.; Ruan, Y. J.; Miao, L.; Jiang, J. J.; Wang, C. S. Water-activated VOPO4 for magnesium ion batteries. Nano Lett. 2018, 18, 6441–6448.

43

Gu, S. C.; Wang, H. L.; Wu, C.; Bai, Y.; Li, H.; Wu, F. Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 2017, 6, 9–17.

44

Gao, Y. N.; Yang, H. Y.; Wang, X. R.; Bai, Y.; Zhu, N.; Guo, S. N.; Suo, L. M.; Li, H.; Xu, H. J.; Wu, C. The compensation effect mechanism of Fe-Ni mixed prussian blue analogues in aqueous rechargeable aluminum-ion batteries. ChemSusChem 2020, 13, 732–740.

45

Huang, J. H.; Wang, Z.; Hou, M. Y.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906.

46

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

47

Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.

Nano Research
Pages 4154-4162
Cite this article:
Wang H, Wang P, Ji Z, et al. Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10, 000 ultralong cycle stability and smart switching capability. Nano Research, 2021, 14(11): 4154-4162. https://doi.org/10.1007/s12274-021-3356-5
Topics:

720

Views

16

Crossref

17

Web of Science

18

Scopus

1

CSCD

Altmetrics

Received: 04 November 2020
Revised: 29 December 2020
Accepted: 20 January 2021
Published: 03 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return