AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting

Hongyao Xue1Alan Meng2Haiqin Zhang3Yusheng Lin4Zhenjiang Li1,4( )Chuansheng Wang5( )
College of Electromechanical EngineeringQingdao University of Science and TechnologyQingdao266061China
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOECollege of Chemistry and Molecular Engineering, Qingdao University of Science and TechnologyQingdao266042China
Shandong Shida Shenghua Chemical Group Co., Ltd.Dongying257503China
College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdao266061China
National Engineering Laboratory for Advanced Equipments and Key Materials for TiresQingdao University of Science and TechnologyQingdao266042China
Show Author Information

Graphical Abstract

Abstract

Cobalt phosphide (CoP) is considered to be a potential candidate in the field of electrocatalysis due to its low-cost, abundant resources and high electrochemical stability. However, there is a great space for further improvement of its electrocatalytic performance since its charge transfer rate and catalytic activity have not reached a satisfactory level. Herein, we design and fabricate a three dimensional urchins like V-doped CoP with different amounts of V-doping on nickel foam electrode. The V-doped CoP/NF electrode with optimized amounts of V-doping (10%) exhibits outstanding hydrogen evolution reaction (HER) performance under universal-pH conditions and preeminent oxygen evolution reaction (OER) performance in alkaline media. Notably, the assembled water-splitting cell displays a cell voltage of only 1.53 V at 10 mA·cm-2 and has excellent durability, much better than many reported related bifunctional catalysts. The experiment results and theoretical analysis revealed that vanadium atoms replace cobalt atoms in CoP lattice. Vanadium doping can not only raise the density of electronic states near the Fermi level enhancing the conductivity of the catalyst, but can also optimize the free energy of hydrogen and oxygen-containing intermediates adsorption over CoP, thus promoting its catalytic activity. Moreover, the unique nanostructure of the catalyst provides the various shortened channels for charge transfer and reactant/electrolyte diffusion, which accelerates the electrocatalytic process. Also, the in situ growth strategy can improve the conductivity and stability of the catalyst.

Electronic Supplementary Material

Download File(s)
12274_2021_3359_MOESM1_ESM.pdf (4.7 MB)

References

1

Wu, Y. W.; Wang, H.; Ji, S.; Pollet, B. G.; Wang, X. Y.; Wang, R. F. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 2020, 13, 2098-2105.

2

Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. L. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447-454.

3

Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197-203.

4

Yang, D. X.; Zhu, Q. G.; Han, B. X. Electroreduction of CO2 in ionic liquid-based electrolytes. Innovation 2020, 1, 100016.

5

Liu, T. Y.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299-3309.

6

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529-1541.

7

Willinger, E.; Massué, C.; Schlögl, R.; Willinger, M. G. Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 2017, 139, 12093-12101.

8

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.

9

Xue, H. Y.; Zhang, H. Q.; Fricke, S.; Lüther, M.; Yang, Z. J.; Meng, A. L.; Bremser, W.; Li, Z. J. Scalable and energy-efficient synthesis of CoxP for overall water splitting in alkaline media by high energy ball milling. Sustainable Energy Fuels 2020, 4, 1723-1729.

10

Tang, C.; Zhang, R.; Lu, W. B.; He, L. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P. Fe-Doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 2017, 29, 1602441.

11

Liu, T. T., ; Ma, X.; Liu, D. N.; Hao, S.; Du, G.; Ma, Y. J.; Asiri, A. M.; Sun, X. P.; Chen, L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal. 2017, 7, 98-102.

12

Shi, J. H.; Qiu, F.; Yuan, W. B.; Guo, M. M.; Lu, Z. H. Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chem. Eng. J. 2021, 403, 126312.

13

Zhang, R.; Tang, C.; Kong, R. M.; Du, G.; Asiri, A. M.; Chen, L.; Sun, X. P. Al-doped CoP nanoarray: A durable water-splitting electrocatalyst with superhigh activity. Nanoscale 2017, 9, 4793-4800.

14

Li, X. M.; Li, S. S.; Yoshida, A.; Sirisomboonchai, S.; Tang, K. Y.; Zuo, Z. J.; Hao, X. G.; Abudula, A.; Guan, G. Q. Mn doped CoP nanoparticle clusters: An efficient electrocatalyst for hydrogen evolution reaction. Catal. Sci. Technol. 2018, 8, 4407-4412.

15

Gao, W.; Yan, M.; Cheung, H. Y.; Xi, Z. M.; Zhou, X. M.; Qin, Y. B.; Wong, C. Y.; Ho, J. C.; Chang, C. R.; Qu, Y. Q. Modulating electronic structure of CoP electrocatalysts towards enhanced hydrogen evolution by Ce chemical doping in both acidic and basic media. Nano Energy 2017, 38, 290-296.

16

Cao, L. M.; Hu, Y. W.; Tang, S. F.; Iljin, A.; Wang, J. W.; Zhang, Z. M.; Lu, T. B. Fe-CoP electrocatalyst derived from a bimetallic Prussian blue analogue for large-current-density oxygen evolution and overall water splitting. Adv. Sci. 2018, 5, 1800949.

17

Hu, G. J.; Xiang, J. X.; Li, J.; Liu, P.; Ali, R. N.; Xiang, B. Urchin- like ternary cobalt phosphosulfide as high-efficiency and stable bifunctional electrocatalyst for overall water splitting. J. Catal. 2019, 371, 126-134.

18

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987-4019.

19

Ren, Z. G.; Ren, X. C.; Zhang, L.; Fu, C. H.; Li, X. F.; Zhang, Y. X.; Gao, B.; Yang, L. J.; Chu, P. K.; Huo, K. F. Tungsten-doped CoP nanoneedle arrays grown on carbon cloth as efficient bifunctional electrocatalysts for overall water splitting. ChemElectroChem 2019, 6, 5229-5236.

20

Ji, L. L.; Wang, J. Y.; Teng, X.; Meyer, T. J.; Chen, Z. F. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020, 10, 412-419.

21

Liu, J. L.; Gao, Y.; Tang, X. X.; Zhan, K.; Zhao, B.; Xia, B. Y.; Yan, Y. Metal-organic framework-derived hierarchical ultrathin CoP nanosheets for overall water splitting. J. Mater. Chem. A 2020, 8, 19254-19261.

22

Zhu, W. X.; Zhang, R.; Qu, F. L.; Asiri, A. M.; Sun, X. P. Design and application of foams for electrocatalysis. ChemCatChem 2017, 9, 1721-1743.

23

Hou, J. G.; Sun, Y. Q.; Li, Z. W.; Zhang, B.; Cao, S. Y.; Wu, Y. Z.; Gao, Z. M.; Sun, L. C. Electrical behavior and electron transfer modulation of nickel-copper nanoalloys confined in nickel-copper nitrides nanowires array encapsulated in nitrogen-doped carbon framework as robust bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater. 2018, 28, 1803278.

24

Cao, S.; You, N.; Wei, L.; Huang, C.; Fan, X. M.; Shi, K.; Yang, Z. H.; Zhang, W. X. CoP microscale prism-like superstructure arrays on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Inorg. Chem. 2020, 59, 8522-8531.

25

Yuan, W. Y.; Wang, X. Y.; Zhong, X. L.; Li, C. M. CoP nanoparticles in situ grown in three-dimensional hierarchical nanoporous carbons as superior electrocatalysts for hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 20720-20729.

26

Qin, J. F.; Lin, J. H.; Chen, T. S.; Liu, D. P.; Xie, J. Y.; Guo, B. Y.; Wang, L.; Chai, Y. M.; Dong, B. Facile synthesis of V-doped CoP nanoparticles as bifunctional electrocatalyst for efficient water splitting. J. Energy Chem. 2019, 39, 182-187.

27

Huang, Z. P.; Chen, Z. Z.; Chen, C. B.; Lv, C. C; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373-382.

28

Li, W. J.; Yang, Q. R.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Cobalt phosphide as a new anode material for sodium storage. J. Power Sources 2015, 294, 627-632.

29

Suo, N.; Han, X. Q.; Chen, C.; He, X, Q.; Dou, Z. Y.; Lin, Z. H.; Cui, L. L.; Xiang, J. B. Engineering vanadium phosphide by iron doping as bifunctional electrocatalyst for overall water splitting. Electrochim. Acta 2020, 333, 135531.

30

Wen, L. L.; Yu, J.; Xing, C. C.; Liu, D. L.; Lyu, X. J.; Cai, W. P.; Li, X. Y. Flexible vanadium-doped Ni2P nanosheet arrays grown on carbon cloth for an efficient hydrogen evolution reaction. Nanoscale 2019, 11, 4198-4203.

31

Chen, D.; Lu, R. H.; Pu, Z. H.; Zhu, J. W.; Li, H. W.; Liu, F.; Hu, S.; Luo, X.; Wu, J. S.; Zhao, Y. et al. Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Appl. Catal. B: Environ. 2020, 279, 119396.

32

Li, Y. J.; Mao, Z. F.; Wang, Q.; Li, D. B.; Wang, R.; He, B. B.; Gong, Y. S.; Wang, H. W. Hollow nanosheet array of phosphorus-anion- decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 390, 124556.

33

Zhang, S. G.; Gao, G. H.; Zhu, H.; Cai, L. J.; Jiang, X. D.; Lu, S. L.; Duan, F.; Dong, W. F.; Chai, Y.; Du, M. L. In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting. Sci. Bull. 2020, 65, 640-650.

34

Zhang, Y.; Guo, H. R.; Li, X. P.; Du, J.; Ren, W. L.; Song, R. A 3D multi-interface structure of coral-like Fe-Mo-S/Ni3S2@NF using for high-efficiency and stable overall water splitting. Chem. Eng. J. 2021, 404, 126483.

35

Lim, J. W.; Jung, J. W.; Kim, N. Y.; Lee, G. Y.; Lee, H. J.; Lee, Y. H.; Choi, D. S.; Yoon, K. R.; Kim, Y. H.; Kim, I. D. et al. N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery. Energy Storage Mater. 2020, 32, 517-524.

Nano Research
Pages 4173-4181
Cite this article:
Xue H, Meng A, Zhang H, et al. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Research, 2021, 14(11): 4173-4181. https://doi.org/10.1007/s12274-021-3359-2
Topics:

806

Views

74

Crossref

74

Web of Science

77

Scopus

5

CSCD

Altmetrics

Received: 15 November 2020
Revised: 31 December 2020
Accepted: 24 January 2021
Published: 22 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return