AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures

Liang Cai§( )Hengli Duan§Qinghua LiuChao WangHao TanWei HuFengchun HuZhihu Sun( )Wensheng Yan( )
National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefei230029China

§ Liang Cai and Hengli Duan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Realizing high-temperature ferromagnetism in two-dimensional (2D) semiconductor nanosheets is significant for their applications in next-generation magnetic and electronic nanodevices. Herein, this goal could be achieved on a MoS2 Moiré superlattice grown on the reduced graphene oxide (RGO) substrate by a hydrothermal approach. The as-synthesized bilayer MoS2 superlattice structure with rotating angle (ϕ = 13° ± 1°) of two hexagonal MoS2 lattices, possesses outstanding ferromagnetic property and an ultra-high Curie temperature of 990 K. The X-ray absorption near-edge structure and ultraviolet photoelectron spectroscopies combined with density functional theory calculation indicate that the covalent interactions between MoS2 Moiré superlattice and RGO substrate lead to the formation of interfacial Mo-S-C bonds and complete spin polarization of Mo 4d electrons near the Fermi level. This design could be generalized and may open up a possibility for tailoring the magnetism of other 2D materials.

Electronic Supplementary Material

Download File(s)
12274_2021_3360_MOESM1_ESM.pdf (2.5 MB)

References

1

Coey, J. M. D.; Venkatesan, M.; Fitzgerald, C. B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 2005, 4, 173-179.

2

Philip, J.; Punnoose, A.; Kim, B. I.; Reddy, K. M.; Layne, S.; Holmes, J. O.; Satpati, B.; Leclair, P. R.; Santos, T. S.; Moodera, J. S. Carrier-controlled ferromagnetism in transparent oxide semiconductors. Nat. Mater. 2006, 5, 298-304.

3

Jamet, M.; Barski, A.; Devillers, T.; Poydenot, V.; Dujardin, R.; Bayle-Guillemaud, P.; Rothman, J.; Bellet-Amalric, E.; Marty, A.; Cibert, J. High-Curie-temperature ferromagnetism in self-organized Ge1− xMnx nanocolumns. Nat. Mater. 2006, 5, 653-659.

4

Xiu, F. X.; Wang, Y.; Kim, J.; Hong, A.; Tang, J. S.; Jacob, A. P.; Zou, J.; Wang, K. L. Electric-field-controlled ferromagnetism in high- Curie-temperature Mn0.05Ge0.95 quantum dots. Nat. Mater. 2010, 9, 337-344.

5

Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; Van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571-574.

6

Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794-807.

7

Ali, M. N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q. D.; Schoop, L. M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N. P. et al. Large, non-saturating magnetoresistance in WTe2. Nature 2014, 514, 205-208.

8

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265- 269.

9

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270-273.

10

Chen, W. J.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983-987.

11

Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289-293.

12

Avsar, A.; Ciarrocchi, A.; Pizzochero, M.; Unuchek, D.; Yazyev, O. V.; Kis, A. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 2019, 14, 674-678.

13

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two- dimensional transition metal dichalcogenides. Science 2014, 346, 1344-1347.

14

Kang, K.; Xie, S. E.; Huang, L.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.

15

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343-350.

16

Cheng, Y. C.; Zhu, Z. Y.; Mi, W. B.; Guo, Z. B.; Schwingenschlögl, U. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems. Phys. Rev. B 2013, 87, 100401.

17

Ramasubramaniam, A.; Naveh, D. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys. Rev. B 2013, 87, 195201.

18

Dobrowolska, M.; Tivakornsasithorn, K.; Liu, X.; Furdyna, J.; Berciu, M.; Yu, K. M.; Walukiewicz, W. Controlling the Curie temperature in (Ga, Mn)As through location of the Fermi level within the impurity band. Nat. Mater. 2012, 11, 444-449.

19

Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586-6591.

20

Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L.; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancy-induced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622-2627.

21

Zhang, J.; Soon, J. M.; Loh, K. P.; Yin, J. H.; Ding, J.; Sullivian, M. B.; Wu, P. Magnetic molybdenum disulfide nanosheet films. Nano Lett. 2007, 7, 2370-2376.

22

Tongay, S.; Varnoosfaderani, S. S.; Appleton, B. R.; Wu, J. Q.; Hebard, A. F. Magnetic properties of MoS2: Existence of ferromagnetism. Appl. Phys. Lett. 2012, 101, 123105.

23

Han, S. W.; Hwang, Y. H.; Kim, S. H.; Yun, W. S.; Lee, J. D.; Park, M. G.; Ryu, S.; Park, J. S.; Yoo, D. H.; Yoon, S. P. et al. Controlling ferromagnetic easy axis in a layered MoS2 single crystal. Phys. Rev. Lett. 2013, 110, 247201.

24

Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347-349.

25

Castro, E. V.; Peres, N. M. R.; Stauber, T.; Silva, N. A. P. Low- density ferromagnetism in biased bilayer graphene. Phys. Rev. Lett. 2008, 100, 186803.

26

Wu, F.; Huang, C. X.; Wu, H. P.; Lee, C.; Deng, H. K. M.; Kan, E.; Jena, P. Atomically thin transition-metal dinitrides: high-temperature ferromagnetism and half-metallicity. Nano Lett. 2015, 15, 8277- 8281.

27

Cao, T.; Li, Z. L.; Louie, S. G. Tunable magnetism and half-metallicity in hole-doped monolayer GaSe. Phys. Rev. Lett. 2015, 114, 236602.

28

Garnica, M.; Stradi, D.; Barja, S.; Calleja, F.; Díaz, C.; Alcamí, M.; Martín, N.; De Parga, A. L. V.; Martín, F.; Miranda, R. Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nat. Phys. 2013, 9, 368-374.

29

Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E. et al. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces. Nat. Phys. 2016, 12, 484-492.

30

Al Ma’Mari, F.; Moorsom, T.; Teobaldi, G.; Deacon, W.; Prokscha, T.; Luetkens, H.; Lee, S.; Sterbinsky, G. E.; Arena, D. A.; MacLaren, D. A. et al. Beating the Stoner criterion using molecular interfaces. Nature 2015, 524, 69-73.

31

Tseng, T. C.; Urban, C.; Wang, Y.; Otero, R.; Tait, S. L.; Alcamí, M.; Écija, D.; Trelka, M.; Gallego, J. M.; Lin, N. et al. Charge-transfer- induced structural rearrangements at both sides of organic/metal interfaces. Nat. Chem. 2010, 2, 374-379.

32

Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. N.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

33

Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198-6202.

34

Ahmed, S.; Viboon, P.; Ding, X.; Bao, N. N.; Du, Y. H.; Herng, T. S.; Ding, J.; Yi, J. B. Annealing effect on the ferromagnetism of MoS2 nanoparticles. J. Alloys Compd. 2018, 746, 399-404.

35

Ivanshin, V. A.; Litvinova, T. O.; Sukhanov, A. A. Electronic hybridization effects in dense intermetallics measured by electron spin resonance. J. Phys. Conf. Ser. , 2011, 273, 012035.

36

Blinc, R.; Cevc, P.; Mrzel, A.; Arčon, D.; Remškar, M.; Milia, F.; Laguta, V. V. EPR spectra of MoS2/C60. Phys. Status Solidi B 2010, 247, 3033-3034.

37

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.

38

Wang, J.; Zhou, J. G.; Hu, Y. F.; Regier, T. Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy Environ. Sci. 2013, 6, 926-934.

39

Lany, S.; Zunger, A. Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys. Rev. Lett. 2007, 98, 045501.

40

Wang, L. F.; Xu, Z.; Wang, W. L.; Bai, X. D. Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693-6697.

41

Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single- layered MoS2. Nat. Nanotechnol. 2014, 9, 391-396.

42

Zhang, M.; Huang, Z. J.; Wang, X.; Zhang, H. Y.; Li, T. H.; Wu, Z. L.; Luo, Y. H.; Cao, W. Magnetic MoS2 pizzas and sandwiches with Mnn (n = 1-4) cluster toppings and fillings: A first-principles investigation. Sci. Rep. 2016, 6, 19504.

43

Edwards, D. M.; Katsnelson, M. I. High-temperature ferromagnetism of sp electrons in narrow impurity bands: Application to CaB6. J. Phys. Condens. Matter. 2006, 18, 7209-7225.

44

Ganguli, N.; Kelly, P. J. Tuning ferromagnetism at interfaces between insulating perovskite oxides. Phys. Rev. Lett. 2014, 113, 127201.

Nano Research
Pages 4182-4187
Cite this article:
Cai L, Duan H, Liu Q, et al. Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures. Nano Research, 2021, 14(11): 4182-4187. https://doi.org/10.1007/s12274-021-3360-9
Topics:

786

Views

10

Crossref

10

Web of Science

10

Scopus

2

CSCD

Altmetrics

Received: 15 November 2020
Revised: 12 January 2021
Accepted: 20 January 2021
Published: 24 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return