AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction

Sheng-Qi Guo1Haijun Zhang2( )Zhenzhong Hu1Mengmeng Zhen1Bo Yang4Boxiong Shen1( )Fan Dong3
Tianjin Key Laboratory of Clean Energy and Pollutant ControlSchool of Energy and Environmental Engineering, Hebei University of TechnologyTianjin300401China
Center for Aircraft Fire and EmergencyDepartment of Safety Engineering, Civil Aviation University of ChinaTianjin300300China
Yangtze Delta Region Institute (Huzhou), & Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaHuzhou313001China
Yangtze Delta Region Institute (Huzhou), & Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaHuzhou313001China
Show Author Information

Graphical Abstract

Abstract

Semiconductor combination is one of the most common strategies to obtain high-efficiency photocatalysts; however, the effect mechanism of composition ratio on micro-structure and photocatalytic activity is remaining unclear. In this study, a case of g-C3N4 quantum dots@SnS2 (CNQDn@SnS2) heterojunction with different ratio of CNQD is used to uncover the origin of optimum and excess composition for photocatalysts. Research on the functional mechanism of the optimum composition shows that 0.8 wt.% CNQD are completely attached to the non-(001) facets of SnS2, which benefits the formation of type-II heterojunction, resulting in an optimal pollutant degradation and mineralization efficiency. For the excess composition, both experiments and theoretical calculations confirm that excess CNQD (the part exceeding of 0.8 wt.%) located on the (001) facet of SnS2, leading to the type-I band alignment of this heterojunction, which severely restricts the separation of photo-induced charge carriers, and thus reduces their lifetime. This work makes the functional mechanism of composition ratio on micro-structure and photocatalytic activity clearer. Related research results provide a new insight into semiconductor combination study and take an important step toward the rational design of highly active photocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2021_3361_MOESM1_ESM.pdf (3.3 MB)

References

1

Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387-399.

2

Kou, J. H.; Lu, C. H.; Wang, J.; Chen, Y. K.; Xu, Z. Z.; Varma, R. S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445-1514.

3

Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313-2322.

4

Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555-1614.

5

Vikrant, K.; Kim, K. H.; Deep, A. Photocatalytic mineralization of hydrogen sulfide as a dual-phase technique for hydrogen production and environmental remediation. Appl. Catal. B Environ. 2019, 259, 118025.

6

Guo, S. Q.; Zhu, X. H.; Zhang, H. J.; Gu, B. C.; Chen, W.; Liu, L.; Alvarez, P. J. J. Improving photocatalytic water treatment through nanocrystal engineering: Mesoporous nanosheet-assembled 3D BiOCl hierarchical nanostructures that induce unprecedented large vacancies. Environ. Sci. Technol. 2018, 52, 6872-6880.

7

Hao, D.; Liu, C. W.; Xu, X. X.; Kianinia, M.; Aharonovich, I.; Bai, X. J.; Liu, X. Q.; Chen, Z. J.; Wei, W.; Jia, G. H. et al. Surface defect- abundant one-dimensional graphitic carbon nitride nanorods boost photocatalytic nitrogen fixation. New J. Chem. 2020, 44, 20651-20658.

8

Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731-759.

9

Qiu, B. C.; Zhu, Q. H.; Du, M. M.; Fan, L. G.; Xing, M. Y.; Zhang, J. L. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem. , Int. Ed. 2017, 56, 2684-2688.

10

Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 2019, 12, 1625-1630.

11

Zhou, Z. H.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81-90.

12

Hao, Q.; Jia, G. H.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B. J. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 2020, 13, 18-37.

13

Li, Y. X.; Wang, X.; Wang, C. C.; Fu, H. F.; Liu, Y. B.; Wang, P.; Zhao, C. S-TiO2/UiO-66-NH2 composite for boosted photocatalytic Cr(VI) reduction and bisphenol A degradation under LED visible light. J. Hazard. Mater. 2020, 399, 123085.

14

Bai, S.; Wang, L. M.; Chen, X. Y.; Du. J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175-183.

15

Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. TiO2-MnOx-Pt hybrid multiheterojunction film photocatalyst with enhanced photocatalytic CO2-reduction activity. ACS Appl. Mater. Interfaces 2019, 11, 5581-5589.

16

Liu, F. L.; Shi, R.; Wang, Z.; Weng, Y. X.; Che, C. M.; Chen, Y. Direct Z-scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting. Angew. Chem. , Int. Ed. 2019, 19, 11791-11795.

17

Wang, P. F.; Mao, Y. S.; Li, L. N.; Shen, Z. R.; Luo, X.; Wu, K. F.; An, P. F.; Wang, H. T.; Su, L. N.; Li, Y. et al. Unraveling the interfacial charge migration pathway at the atomic level in a highly efficient Z-scheme photocatalyst. Angew. Chem. , Int. Ed. 2019, 58, 11329- 11334.

18

Humayun, M.; Xu, L.; Zhou, L.; Zheng, Z. P.; Fu, Q. Y.; Luo, W. Exceptional co-catalyst free photocatalytic activities of B and Fe co-doped SrTiO3 for CO2 conversion and H2 evolution. Nano Res. 2018, 11, 6391-6404.

19

Huang, Q.; Wang, C.; Hao, D.; Wei, W.; Wang, L. C.; Ni, B. J. Ultralight biodegradable 3D-g-C3N4 aerogel for advanced oxidation water treatment driven by oxygen delivery channels and triphase interfaces. J. Clean. Prod. 2021, 288, 125091.

20

Qiu, F.; Han, Z. J.; Peterson, J. J.; Odoi, M. Y.; Sowers, K. L.; Krauss, T. D. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles. Nano Lett. 2016, 16, 5347-5352.

21

Fageria, P.; Uppala, S.; Nazir, R.; Gangopadhyay, S.; Chang, C. H.; Basu, M.; Pande, S. Synthesis of monometallic (Au and Pd) and Bimetallic (AuPd) nanoparticles using carbon nitride (C3N4) quantum dots via the photochemical route for nitrophenol reduction. Langmuir 2016, 32, 10054-10064.

22

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115-13118.

23

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

24

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

25

Zhang, H. J.; Zuo, X. Q.; Tang, H. B.; Li, G.; Zhou, Z. Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: Insights from first-principles computations. Phys. Chem. Chem. Phys. 2015, 17, 6280-6288.

26

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.

27

Ahn, J. H.; Lee, M. J.; Heo, H.; Sung, J. H.; Kim, K.; Hwang, H.; Jo, M. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 2015, 15, 3703-3708.

28

Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J. F.; Pan, Y.; Yan, W. S. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 18044-18051.

29

Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/NiFe layered double- hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918-7925.

30

Smith, D. G. A.; Patkowski, K. Benchmarking the CO2 adsorption energy on carbon nanotubes. J. Phys. Chem. C 2015, 119, 4934-4948.

31

Xu, C. P.; Anusuyadevi, P. R.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 2019, 48, 3868-3902.

32

Liu, D.; Wang, J.; Wang, Y. G.; Zhu, Y. F. An anion exchange strategy for construction of a novel Bi2SiO5/Bi2MoO6 heterostructure with enhanced photocatalytic performance. Catal. Sci. Technol. 2018, 8, 3278-3285.

33

Zhao, Z.; Shen, B. X.; Hu, Z. Z.; Zhang, J. W.; He, C.; Yao, Y.; Guo, S. Q.; Dong, F. Recycling of spent alkaline Zn-Mn batteries directly: Combination with TiO2 to construct a novel Z-scheme photocatalytic system. J. Hazard. Mater. 2020, 400, 123236.

34

Yu, F. K.; Chen, Y.; Pan, Y. W.; Yang, Y.; Ma, H. R. A cost-effective production of hydrogen peroxide via improved mass transfer of oxygen for electro-Fenton process using the vertical flow reactor. Sep. Purif. Technol. 2020, 241, 116695.

35

Choi, Y.; Koo, M. S.; Bokare, A. D.; Kim, D. H.; Bahnemann, D. W.; Choi, W. Sequential process combination of photocatalytic oxidation and dark reduction for the removal of organic pollutants and Cr(VI) using Ag/TiO2. Environ. Sci. Technol. 2017, 51, 3973-3981.

36

Li, J. Y.; Zhang, Z. Y.; Cui, W.; Wang, H.; Cen, W. L.; Johnson, G.; Jiang, G. M.; Zhang, S.; Dong, F. The spatially oriented charge flow and photocatalysis mechanism on internal van der Waals heterostructures enhanced g-C3N4. ACS Catal. 2018, 8, 8376-8385.

37

Pan, L.; Wang, S. B.; Xie, J. W.; Wang, L.; Zhang, X. W.; Zhou, J. J. Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy 2016, 28, 296-303.

38

Guo, S. Q.; Hu, Z. Z.; Zhen, M. M.; Gu, B. C.; Shen, B. X.; Dong, F. Insights for optimum cation defects in photocatalysis: A case study of hematite nanostructures. Appl. Catal. B Environ. 2020, 264, 118506.

39

Yang, B.; Bi, W. T.; Wan, Y. Y.; Li, X. G.; Huang, M. C.; Yuan, R. L.; Ju, H. X.; Chu, W. S.; Wu, X. J.; He. L. H. et al. Surface etching induced ultrathin sandwich structure realizing enhanced photocatalytic activity. Sci. China Chem. 2018, 6, 1572-1580.

40

Black, L. E.; Cavalli, A.; Verheijen, M. A.; Haverkort, J. E. M.; Bakkers, E. P. A. M.; Kessels, W. M. M. Effective surface passivation of InP nanowires by atomic-layer-deposited Al2O3 with POx interlayer. Nano Lett. 2017, 17, 6287-6294.

41

Guo, C. S.; Ge, M.; Liu, L.; Gao. G. D.; Feng, Y. C.; Wang, Y. Q. Directed synthesis of mesoporous TiO2 microspheres: Catalysts and their photocatalysis for bisphenol A degradation. Environ. Sci. Technol. 2009, 44, 419-425.

42

Wang, C. Y.; Zhang, H.; Li, F.; Zhu, L. Y. Degradation and mineralization of bisphenol A by mesoporous Bi2WO6 under simulated solar light irradiation. Environ. Sci. Technol. 2010, 44, 6843-6848.

Nano Research
Pages 4188-4196
Cite this article:
Guo S-Q, Zhang H, Hu Z, et al. Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction. Nano Research, 2021, 14(11): 4188-4196. https://doi.org/10.1007/s12274-021-3361-8
Topics:

777

Views

32

Crossref

34

Web of Science

34

Scopus

8

CSCD

Altmetrics

Received: 14 December 2020
Revised: 06 January 2021
Accepted: 24 January 2021
Published: 01 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return