AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives

Zhao Li1Rui Wu1( )Lei Zhao1Pingbo Li3Xinxin Wei1Junjie Wang1Jun Song Chen1( )Tierui Zhang2 ( )
School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731China
Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijing100190China
College of Chemistry and Chemical EngineeringChongqing University of TechnologyChongqing400054China
Show Author Information

Graphical Abstract

Abstract

Electrochemical CO2 reduction reaction (CO2RR) offers a practical solution to current global greenhouse effect by converting excessive CO2 into value-added chemicals or fuels. Noble metal-based nanomaterials have been considered as efficient catalysts for the CO2RR owing to their high catalytic activity, long-term stability and superior selectivity to targeted products. On the other hand, they are usually loaded on different support materials in order to minimize their usage and maximize the utilization because of high price and limited reserve. The strong metal-support interaction (MSI) between the metal and substrate plays an important role in affecting the CO2RR performance. In this review, we mainly focus on different types of support materials (e.g., oxides, carbons, ligands, alloys and metal carbides) interacting with noble metal as electrocatalysts for CO2RR. Moreover, the positive effects about MSI for boosting the CO2RR performance via regulating the adsorption strength, electronic structure, coordination environment and binding energy are presented. Lastly, emerging challenges and future opportunities on noble metal electrocatalysts with strong MSI are discussed.

References

1

 Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

2

 Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

3

 Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

4

 Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.

5

 Feng, J. Q.; Gao, H. S.; Zheng, L. R.; Chen, Z. P.; Zeng, S. J.; Jiang, C. Y.; Dong, H. F.; Liu, L. C.; Zhang, S. J.; Zhang, X. P. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 2020, 11, 4341.

6

 Jouny, M.; Hutchings, G. S.; Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2019, 2, 1062–1070.

7

 Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 2016, 353, 467–470.

8

 Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

9

 Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

10

Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W. T.; Stavitski, E.; Alshareef, H. N.; Wang, H. T. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 2019, 4, 776–785.

11

Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

12

Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

13

Zhu, P.; Wang, H. T. Structural evolution of oxide-/hydroxide-derived copper electrodes accounts for the enhanced C2+ product selectivity during electrochemical CO2 reduction. Sci. Bull. 2020, 65, 977–979.

14

Nam, D. H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F. W.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020, 19, 266–276.

15

Li, M. L.; Zhang, L. X.; Wu, M. Y.; Du, Y. Y.; Fan, X. Q.; Wang, M.; Zhang, L. L.; Kong, Q. L.; Shi, J. L. Mesostructured CeO2/g-C3N4 nanocomposites: Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy 2016, 19, 145–155.

16

Wang, Y. C.; Liu, Y.; Liu, W.; Wu, J.; Li, Q.; Feng, Q. G.; Chen, Z. Y.; Xiong, X.; Wang, D. S.; Lei, Y. P. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 2020, 13, 4609–4624.

17

Wang, H. X.; Tzeng, Y. K.; Ji, Y. F.; Li, Y. B.; Li, J.; Zheng, X. L.; Yang, A. K.; Liu, Y. Y.; Gong, Y. J.; Cai, L. L. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol 2020, 15, 131–137.

18

Liu, H. L.; Zhu, Y. T.; Ma, J. M.; Zhang, Z. C.; Hu, W. P. Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv. Funct. Mater. 2020, 30, 1910534.

19

Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.

20

Duan, X. C.; Xu, J. T.; Wei, Z. X.; Ma, J. M.; Guo, S. J.; Wang, S. Y.; Liu, H. K.; Dou, S. X. Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 2017, 29, 1701784.

21

Long, C.; Li, X.; Guo, J.; Shi, Y. N.; Liu, S. Q.; Tang, Z. Y. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: Recent progress and perspectives. Small Methods 2018, 3, 1800369.

22

Vasileff, A.; Zheng, Y.; Qiao, S. Z. Carbon solving carbon's problems: Recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv. Energy Mater. 2017, 7, 1700759.

23

Zhang, S.; Fan, Q.; Xia, R.; Meyer, T. J. CO2 reduction: From homogeneous to heterogeneous electrocatalysis. Acc. Chem. Res. 2020, 53, 255–264.

24

Luo, W.; Zhang, J.; Li, M.; Züttel, A. Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts. ACS Catal. 2019, 9, 3783–3791.

25

Won, D. H.; Shin, H.; Koh, J.; Chung, J.; Lee, H. S.; Kim, H.; Woo, S. I. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem. , Int. Ed. 2016, 55, 9297–9300.

26

Zhou, J. H.; Yuan, K.; Zhou, L.; Guo, Y.; Luo, M. Y.; Guo, X. Y.; Meng, Q. Y.; Zhang, Y. W. Boosting electrochemical reduction of CO2 at a low overpotential by amorphous Ag-Bi-S-O decorated Bi0 nanocrystals. Angew. Chem. , Int. Ed. 2019, 58, 14197–14201.

27

Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2019, 10, 1902338.

28

Wang, Y. R.; Yang, R. X.; Chen, Y. F.; Gao, G. K.; Wang, Y. J.; Li, S. L.; Lan, Y. Q. Chloroplast-like porous bismuth-based core-shell structure for high energy efficiency CO2 electroreduction. Sci. Bull. 2020, 65, 1635–1642.

29

Zhang, J. B.; Yin, R. G.; Shao, Q.; Zhu, T.; Huang, X. Q. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew. Chem. , Int. Ed. 2019, 58, 5609–5613.

30

Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 2018, 8, 1801536.

31

Deng, P. L.; Wang, H. M.; Qi, R. J.; Zhu, J. X.; Chen, S. H.; Yang, F.; Zhou, L.; Qi, K.; Liu, H. F.; Xia, B. Y. Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2019, 10, 743–750.

32

Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

33

He, J.; Liu, X. J.; Liu, H. X.; Zhao, Z.; Ding, Y.; Luo, J. Highly selective electrocatalytic reduction of CO2 to formate over Tin(IV) sulfide monolayers. J. Catal. 2018, 364, 125–130.

34

Liu, S. B.; Lu, X. F.; Xiao, J.; Wang, X.; Lou, X. W. Bi2O3 Nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. , Int. Ed. 2019, 58, 13828–13833.

35

Zhang, A.; Liang, Y. X.; Li, H. P.; Zhao, X. Y.; Chen, Y. L.; Zhang, B. Y.; Zhu, W. G.; Zeng, J. Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction. Nano Lett. 2019, 19, 6547–6553.

36

Zheng, X. L.; Luna, D.; de Arquer, F. P. G.; Zhang, B.; Becknell, N.; Ross, M. B.; Li, Y. F.; Banis, M. N.; Li, Y. Z.; Liu, M. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 2017, 1, 794–805.

37

Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb–N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

38

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom Indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem. , Int. Ed. 2020, 59, 22465–22469.

39

Xie, H.; Wang, T. Y.; Liang, J. S.; Li, Q.; Sun, S. H. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54.

40

Pan, F. P.; Li, B. Y.; Sarnello, E.; Fei, Y. H.; Feng, X. H.; Gang, Y.; Xiang, X. M.; Fang, L. Z.; Li, T.; Hu, Y. H. et al. Pore-edge tailoring of single-atom iron–nitrogen sites on graphene for enhanced CO2 reduction. ACS Catal. 2020, 10, 10803–10811.

41

Adli, N. M.; Shan, W. T.; Hwang, S.; Samarakoon, W.; Karakalos, S.; Li, Y.; Cullen, D. A.; Su, D.; Feng, Z. X.; Wang, G. F.; et al. Engineering atomically dispersed FeN4 active sites for CO2 electroreduction. Angew. Chem. , Int. Ed. 2021, 60, 1022–1032.

42

Li, Z. D.; He, D.; Yan, X. X.; Dai, S.; Younan, S.; Ke, Z. J.; Pan, X. Q.; Xiao, X. H.; Wu, H. J.; Gu, J. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew. Chem. 2020, 132, 18731–18736.

43

Cao, L.; Raciti, D.; Li, C. Y.; Livi, K. J. T.; Rottmann, P. F.; Hemker, K. J.; Mueller, T.; Wang, C. Mechanistic insights for low-overpotential electroreduction of CO2 to CO on copper nanowires. ACS Catal. 2017, 7, 8578–8587.

44

Peterson, A. A.; Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 2012, 3, 251–258.

45

Han, Z.; Hu, Q.; Cheng, Z.; Li, G. M.; Huang, X. W.; Wang, Z. Y.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H. et al. High-performance overall CO2 splitting on hierarchical structured cobalt disulfide with partially removed sulfur edges. Adv. Funct. Mater. 2020, 30, 2000154.

46

Zhang, T. Y.; Han, X.; Yang, H. B.; Han, A. J.; Hu, E. Y.; Li, Y. P.; Yang, X. Q.; Wang, L.; Liu, J. F.; Liu, B. Atomically dispersed nickel(I) on an alloy-encapsulated nitrogen-doped carbon nanotube array for high-performance electrochemical CO2 reduction reaction. Angew. Chem. , Int. Ed. 2020, 59, 12055–12061.

47

Yin, Z. Y.; Yu, C.; Zhao, Z. L.; Guo, X. F.; Shen, M. Q.; Li, N.; Muzzio, M.; Li, J. R.; Liu, H.; Lin, H. H. et al. Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett. 2019, 19, 8658–8663.

48

Sun, X. F.; Zhu, Q. G.; Kang, X. C.; Liu, H. Z.; Qian, Q. L.; Ma, J.; Zhang, Z. F.; Yang, G. Y.; Han, B. X. Design of a Cu(i)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid. Green Chem. 2017, 19, 2086–2091.

49

Reske, R.; Mistry, H.; Behafarid, F.; Cuenya, B. R.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

50

Gao, S.; Sun, Z. T.; Liu, W.; Jiao, X. C.; Zu, X. L.; Hu, Q. T.; Sun, Y. F.; Yao, T.; Zhang, W. H.; Wei, S. Q. et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat. Commun. 2017, 8, 14503.

51

Zhang, W. B.; Zeng, J. C.; Liu, H. G.; Shi, Z. P.; Tang, Y.; Gao, Q. S. CoxNi1–x nanoalloys on N-doped carbon nanofibers: Electronic regulation toward efficient electrochemical CO2 reduction. J. Catal. 2019, 372, 277–286.

52

Cai, F.; Gao, D. F.; Zhou, H.; Wang, G. X.; He, T.; Gong, H. M.; Miao, S.; Yang, F.; Wang, J. G.; Bao, X. H. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction. Chem. Sci. 2017, 8, 2569–2573.

53

Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

54

Hall, A. S.; Yoon, Y.; Wuttig, A.; Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 2015, 137, 14834–14837.

55

Sun, K.; Ji, Y. J.; Liu, Y. Y.; Wang, Z. J. Synergies between electronic and geometric effects of Mo-doped Au nanoparticles for effective CO2 electrochemical reduction. J. Mater. Chem. A 2020, 8, 12291–12295.

56

Sun, K.; Wu, L. N.; Qin, W.; Zhou, J. G.; Hu, Y. F.; Jiang, Z. H.; Shen, B. Z.; Wang, Z. J. Enhanced electrochemical reduction of CO2 to CO on Ag electrocatalysts with increased unoccupied density of states. J. Mater. Chem. A 2016, 4, 12616–12623.

57

Qi, Z.; Biener, J.; Biener, M. Surface oxide-derived nanoporous gold catalysts for electrochemical CO2-to-CO reduction. ACS Appl. Energy Mater. 2019, 2, 7717–7721.

58

Liu, S. Q.; Wu, S. W.; Gao, M. R.; Li, M. S.; Fu, X. Z.; Luo, J. L. Hollow porous ag spherical catalysts for highly efficient and selective electrocatalytic reduction of CO2 to CO. ACS Sustainable Chem. Eng. 2019, 7, 14443–14450.

59

Liu, M.; Liu, M. X.; Wang, X. M.; Kozlov, S. M.; Cao, Z.; De Luna, P.; Li, H. M.; Qiu, X. Q.; Liu, K.; Hu, J. H. et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule 2019, 3, 1703–1718.

60

Kuang, M.; Guan, A. X.; Gu, Z. X.; Han, P.; Qian, L. P.; Zheng, G. F. Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Res. 2019, 12, 2324–2329.

61

Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 2013, 4, 2819.

62

Dong, Y.; Zhang, Q. J.; Tian, Z. Q.; Li, B. R.; Yan, W. S.; Wang, S.; Jiang, K. M.; Su, J. W.; Oloman, C. W.; Gyenge, E. L. et al. Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv. Mater. 2020, 32, 2001300.

63

Li, H. Q.; Xiao, N.; Wang, Y. W.; Li, C.; Ye, X.; Guo, Z.; Pan, X.; Liu, C.; Bai, J. P.; Xiao, J. et al. Nitrogen-doped tubular carbon foam electrodes for efficient electroreduction of CO2 to syngas with potential-independent CO/H2 ratios. J. Mater. Chem. A 2019, 7, 18852–18860.

64

Lin, R.; Ma, X. L.; Cheong, W. C.; Zhang, C.; Zhu, W.; Pei, J. J.; Zhang, K. Y.; Wang, B.; Liang, S. Y.; Liu, Y. X. et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 2019, 12, 2866–2871.

65

Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028.

66

Chen, Y. H.; Li, C. W.; Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 2012, 134, 19969–19972.

67
Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem. , Int. Ed., in press, DOI: 10.1002/anie.202014718.https://doi.org/10.1002/anie.202014718
68

Zhu, W. L.; Michalsky, R.; Metin, Ö.; Lv, H. F.; Guo, S. J.; Wright, C. J.; Sun, X. L.; Peterson, A. A.; Sun, S. H. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135, 16833–16836.

69

Gao, D. F.; Zhou, H.; Wang, J.; Miao, S.; Yang, F.; Wang, G. X.; Wang, J. G.; Bao, X. H. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J. Am. Chem. Soc. 2015, 137, 4288–4291.

70
Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Ma, X.; Kim, M.; Adhikari, S.; Lu, C.; Dun, C.; Chi, M. et al. Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas. Nat. Commun. 2019, 10, 5724.https://doi.org/10.1038/s41467-019-13388-8
71

Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.

72

Yang, D. R.; Liu, L.; Zhang, Q.; Shi, Y.; Zhou, Y.; Liu, C. G.; Wang, F. B.; Xia, X. H. Importance of Au nanostructures in CO2 electrochemical reduction reaction. Sci. Bull. 2020, 65, 796–802.

73

Kim, J.; Song, J. T.; Ryoo, H.; Kim, J. G.; Chung, S. Y.; Oh, J. Morphology-controlled Au nanostructures for efficient and selective electrochemical CO2 reduction. J. Mater. Chem. A 2018, 6, 5119–5128.

74

Liu, S. B.; Sun, C.; Xiao, J.; Luo, J. L. Unraveling structure sensitivity in CO2 electroreduction to near-unity CO on silver nanocubes. ACS Catal. 2020, 10, 3158–3163.

75

Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F. et al. Enhancing CO2 electroreduction with the metal-oxide interface. J. Am. Chem. Soc. 2017, 139, 5652–5655.

76

Zhang, L.; Mao, F. X.; Zheng, L. R.; Wang, H. F.; Yang, X. H.; Yang, H. G. Tuning metal catalyst with metal–C3N4 interaction for efficient CO2 electroreduction. ACS Catal. 2018, 8, 11035–11041.

77

Cheng, Z.; Sherman, B. J.; Lo, C. S. Carbon dioxide activation and dissociation on ceria (110): A density functional theory study. J. Chem. Phys 2013, 138, 014702.

78

Li, Q.; Fu, J. J.; Zhu, W. L.; Chen, Z. Z.; Shen, B.; Wu, L. H.; Xi, Z.; Wang, T. Y.; Lu, G.; Zhu, J. J. et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the Core/Shell Cu/SnO2 structure. J. Am. Chem. Soc. 2017, 139, 4290–4293.

79

Zhang, J.; Qiao, M.; Li, Y. F.; Shao, Q.; Huang, X. Q. Highly active and selective electrocatalytic CO2 conversion enabled by Core/Shell Ag/(Amorphous-Sn(IV)) nanostructures with tunable shell thickness. ACS Appl. Mater. Interfaces 2019, 11, 39722–39727.

80

He, R.; Yuan, X.; Shao, P. F.; Duan, T.; Zhu, W. K. Hybridization of defective tin disulfide nanosheets and silver nanowires enables efficient electrochemical reduction of CO2 into formate and syngas. Small 2019, 15, e1904882.

81

Ma, S. C.; Lan, Y. C.; Perez, G. M. J.; Moniri, S.; Kenis, P. J. A. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. ChemSusChem 2014, 7, 866–874.

82

Li, J. J.; Zhu, B. L.; Wang, G. C.; Liu, Z. F.; Huang, W. P.; Zhang, S. M. Enhanced CO catalytic oxidation over an Au–Pt alloy supported on TiO2 nanotubes: Investigation of the hydroxyl and Au/Pt ratio influences. Catal. Sci. Technol. 2018, 8, 6109–6122.

83

Liu, S. F.; Xu, W.; Niu, Y. M.; Zhang, B. S.; Zheng, L. R.; Liu, W.; Li, L.; Wang, J. H. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 2019, 10, 5790.

84

Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C. T.; Wang, L. X.; Meng, X. J.; Li, B.; Su, D. S.; Xiao, F. S. Wet-chemistry strong metal-support interactions in titania-supported Au catalysts. J. Am. Chem. Soc. 2019, 141, 2975–2983.

85

Sun, L. B.; Reddu, V.; Fisher, A. C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403.

86

He, Q.; Lee, J. H.; Liu, D. B.; Liu, Y. M.; Lin, Z. X.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Accelerating CO2 electroreduction to CO over Pd single‐atom catalyst. Adv. Funct. Mater. 2020, 30, 2000407.

87

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2020, 2000051.

88

Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. L.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

89

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

90

Cao, Z.; Zacate, S. B.; Sun, X. D.; Liu, J. J.; Hale, E. M.; Carson, W. P.; Tyndall, S. B.; Xu, J.; Liu, X. W.; Liu, X. C. et al. Tuning gold nanoparticles with chelating ligands for highly efficient electrocatalytic CO2 reduction. Angew. Chem. , Int. Ed. 2018, 57, 12675–12679.

91

Zhao, Y.; Wang, C. Y.; Liu, Y. Q.; MacFarlane, D. R.; Wallace, G. G. Engineering surface amine modifiers of ultrasmall gold nanoparticles supported on reduced graphene oxide for improved electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8, 1801400.

92

Ao, X.; Zhang, W.; Zhao, B. T.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C. D.; Liu, M. L. Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 2020, 13, 3032–3040.

93

Luo, M. C.; Sun, Y. J.; Wang, L.; Guo, S. J. Tuning multimetallic ordered intermetallic nanocrystals for efficient energy electrocatalysis. Adv. Energy Mater. 2017, 7, 1602073.

94

Kim, H. Y.; Kim, J. M.; Ha, Y.; Woo, J.; Byun, A.; Shin, T. J.; Park, K. H.; Jeong, H. Y.; Kim, H.; Kim, J. Y. et al. Activity origin and multifunctionality of Pt-based intermetallic nanostructures for efficient electrocatalysis. ACS Catal. 2019, 9, 11242–11254.

95

Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336.

96

Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.

97

Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

98

Ma, M.; Hansen, H. A.; Valenti, M.; Wang, Z. G.; Cao, A. P.; Dong, M. D.; Smith, W. A. Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films. Nano Energy 2017, 42, 51–57.

99

Sankar, M.; He, Q.; Engel, R. V.; Sainna, M. A.; Logsdail, A. J.; Roldan, A.; Willock, D. J.; Agarwal, N.; Kiely, C. J.; Hutchings, G. J. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020, 120, 3890–3938.

100

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

101

Dong, H.; Zhang, L.; Li, L. L.; Deng, W. Y.; Hu, C. L.; Zhao, Z. J.; Gong, J. L. Abundant Ce3+ ions in Au-CeOx nanosheets to enhance CO2 electroreduction performance. Small 2019, 15, e1900289.

102

Wang, J. J.; Kattel, S.; Hawxhurst, C. J.; Lee, J. H.; Tackett, B. M.; Chang, K.; Rui, N.; Liu, C. J.; Chen, J. G. Enhancing activity and reducing cost for electrochemical reduction of CO2 by supporting palladium on metal carbides. Angew. Chem. , Int. Ed. 2019, 58, 6271–6275.

103

Zhao, S. Q.; Tang, Z. Y.; Guo, S. J.; Han, M. M.; Zhu, C.; Zhou, Y. J.; Bai, L.; Gao, J.; Huang, H.; Li, Y. Y. et al. Enhanced activity for CO2 electroreduction on a highly active and stable ternary Au-CDots-C3N4 electrocatalyst. ACS Catal. 2018, 8, 188–197.

104

Liu, X. Y.; Liu, M. H.; Luo, Y. C.; Mou, C. Y.; Lin, S. D.; Cheng, H. K.; Chen, J. M.; Lee, J. F.; Lin, T. S. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 2012, 134, 10251–10258.

105

Liu, M. H.; Chen, Y. W.; Lin, T. S.; Mou, C. Y. Defective mesocrystal ZnO-supported gold catalysts: Facilitating CO oxidation via vacancy defects in ZnO. ACS Catal. 2018, 8, 6862–6869.

106

Wang, T. T.; Sang, X. H.; Zheng, W. Z.; Yang, B.; Yao, S. Y.; Lei, C. J.; Li, Z. J.; He, Q. G.; Lu, J. G.; Lei, L. C. et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn-CO2 batteries. Adv. Mater. 2020, 32, 2002430.

107

Li, X. G.; Xi, S. B.; Sun, L. B.; Dou, S.; Huang, Z. F.; Su, T.; Wang, X. Isolated FeN4 sites for efficient electrocatalytic CO2 reduction. Adv. Sci. 2020, 7, 2001545.

108

Yang, H. P.; Lin, Q.; Zhang, C.; Yu, X. Y.; Cheng, Z.; Li, G. D.; Hu, Q.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H. et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 2020, 11, 593.

109

Zhang, H. N.; Li, J.; Xi, S. B.; Du, Y. H.; Hai, X.; Wang, J. Y.; Xu, H. M.; Wu, G.; Zhang, J.; Lu, J. et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. , Int. Ed. 2019, 58, 14871–14876.

110

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

111

Wang, X. S.; Pan, Y. Y.; Ning, H.; Wang, H. M.; Guo, D. L.; Wang, W. H.; Yang, Z. X.; Zhao, Q. S.; Zhang, B. X.; Zheng, L. R. et al. Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl. Catal. B: Environ. 2020, 266, 118630.

112

Pan, F. P.; Li, B. Y.; Sarnello, E.; Fei, Y. H.; Gang, Y.; Xiang, X. M.; Du, Z. C.; Zhang, P.; Wang, G. F.; Nguyen, H. T. et al. Atomically dispersed iron-nitrogen sites on hierarchically mesoporous carbon nanotube and graphene nanoribbon networks for CO2 reduction. ACS Nano 2020, 14, 5506–5516.

113

Zhang, Y. L.; Zhang, J. Y.; Zhang, B. S.; Si, R.; Han, B.; Hong, F.; Niu, Y. M.; Sun, L.; Li, L.; Qiao, B. T. et al. Boosting the catalysis of gold by O2 activation at Au-SiO2 interface. Nat. Commun. 2020, 11, 558.

114

Larrazábal, G. O.; Martín, A. J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J. Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. J. Catal. 2016, 343, 266–277.

115

Luo, W.; Xie, W.; Mutschler, R.; Oveisi, E.; De Gregorio, G. L.; Buonsanti, R.; Züttel, A. Selective and stable electroreduction of CO2 to CO at the copper/indium interface. ACS Catal. 2018, 8, 6571–6581.

116

Zheng, X. L.; Ji, Y. F.; Tang, J.; Wang, J. Y.; Liu, B. F.; Steinrück, H. G.; Lim, K.; Li, Y. Z.; Toney, M. F.; Chan, K. et al. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal. 2019, 2, 55–61.

117

Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. , Int. Ed. 2006, 45, 8224–8227.

118

Lee, Y.; Garcia, M. A.; Huls, N. A. F.; Sun, S. H. Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew. Chem. , Int. Ed. 2010, 49, 1271–1274.

119

Zhang, W. Y.; Qin, Q.; Dai, L.; Qin, R. X.; Zhao, X. J.; Chen, X. M.; Ou, D. H.; Chen, J.; Chuong, T. T.; Wu, B. B. et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew. Chem. , Int. Ed. 2018, 57, 9475–9479.

120

Luc, W.; Collins, C.; Wang, S. W.; Xin, H. L.; He, K.; Kang, Y. J.; Jiao, F. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 2017, 139, 1885–1893.

121

Lopez-Sanchez, J. A.; Dimitratos, N.; Hammond, C.; Brett, G. L.; Kesavan, L.; White, S.; Miedziak, P.; Tiruvalam, R.; Jenkins, R. L.; Carley, A. F. et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat. Chem. 2011, 3, 551–556.

122

Nguyen, D. L. T.; Kim, Y.; Hwang, Y. J.; Won, D. H. Progress in development of electrocatalyst for CO2 conversion to selective CO production. Carbon Energy 2020, 2, 72–98.

123

Guo, L.; Jiang, W. J.; Zhang, Y.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Embedding Pt nanocrystals in N-Doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal. 2015, 5, 2903–2909.

124

Ham, Y. S.; Park, Y. S.; Jo, A.; Jang, J. H.; Kim, S. K.; Kim, J. J. Proton-exchange membrane CO2 electrolyzer for CO production using Ag catalyst directly electrodeposited onto gas diffusion layer. J. Power Sources 2019, 437, 226898.

125
Miola, M.; Hu, X. M.; Brandiele, R.; Bjerglund, E. T.; Grønseth, D. K.; Durante, C.; Pedersen, S. U.; Lock, N.; Skrydstrup, T.; Daasbjerg, K. Ligand-free gold nanoparticles supported on mesoporous carbon as electrocatalysts for CO2 reduction. J. CO2 Util. 2018, 28, 50–58.https://doi.org/10.1016/j.jcou.2018.09.009
126

Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 2017, 10, 1180–1185.

127

Feng, X. F.; Jiang, K. L.; Fan, S. S.; Kanan, M. W. Grain-boundary-dependent CO2 electroreduction activity. J. Am. Chem. Soc. 2015, 137, 4606–4609.

128

Zhang, Y. C.; Hu, L.; Han, W. Q. Insights into in situ one-step synthesis of carbon-supported nano-particulate gold-based catalysts for efficient electrocatalytic CO2 reduction. J. Mater. Chem. A 2018, 6, 23610–23620.

129

Li, Y. F.; Chen, C.; Cao, R.; Pan, Z. W.; He, H.; Zhou, K. B. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 268, 118747.

130

Lin, R. H.; Albani, D.; Fako, E.; Kaiser, S. K.; Safonova, O. V.; López, N.; Pérez-Ramírez, J. Design of single gold atoms on nitrogen-doped carbon for molecular recognition in alkyne semihydrogenation. Angew. Chem. , Int. Ed. 2019, 58, 504–509.

131

Li, Q.; Zhu, W. L.; Fu, J. J.; Zhang, H. Y.; Wu, G.; Sun, S. H. Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 2016, 24, 1–9.

132

Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 2015, 137, 13844–13850.

133

Yang, C. H.; Li, S. Y.; Zhang, Z. C.; Wang, H. Q.; Liu, H. L.; Jiao, F.; Guo, Z. G.; Zhang, X. T.; Hu, W. P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.

134

Wagner, A.; Ly, K. H.; Heidary, N.; Szabó, I.; Földes, T.; Assaf, K. I.; Barrow, S. J.; Sokolowski, K.; Al-Hada, M.; Kornienko, N. et al. Host-guest chemistry meets electrocatalysis: Cucurbit[6]uril on a Au surface as a hybrid system in CO2 reduction. ACS Catal. 2020, 10, 751–761.

135

Cao, Z.; Kim, D.; Hong, D. C.; Yu, Y.; Xu, J.; Lin, S.; Wen, X. D.; Nichols, E. M.; Jeong, K.; Reimer, J. A. et al. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J. Am. Chem. Soc. 2016, 138, 8120–8125.

136

Fang, Y. X.; Cheng, X.; Flake, J. C.; Xu, Y. CO2 electrochemical reduction at thiolate-modified bulk Au electrodes. Catal. Sci. Technol. 2019, 9, 2689–2701.

137

Fu, J. J.; Zhu, W. L.; Chen, Y.; Yin, Z. Y.; Li, Y. Y.; Liu, J.; Zhang, H. Y.; Zhu, J. J.; Sun, S. H. Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2. Angew. Chem. , Int. Ed. 2019, 58, 14100–14103.

138

Lee, J. H.; Kattel, S.; Xie, Z. H.; Tackett, B. M.; Wang, J. J.; Liu, C. J.; Chen, J. G. Understanding the role of functional groups in polymeric binder for electrochemical carbon dioxide reduction on gold nanoparticles. Adv. Funct. Mater. 2018, 28, 1804762.

139

Cui, X. F.; Wang, J.; Liu, B.; Ling, S.; Long, R.; Xiong, Y. J. Turning Au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands. J. Am. Chem. Soc. 2018, 140, 16514–16520.

140

Cho, M.; Song, J. T.; Back, S.; Jung, Y.; Oh, J. The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction. ACS Catal. 2018, 8, 1178–1185.

141

Mahyoub, S. A.; Qaraah, F. A.; Chen, C. Z.; Zhang, F. H.; Yan, S. L.; Cheng, Z. M. An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO. Sustainable Energy Fuels 2020, 4, 50–67.

142

Wang, Z. J.; Wu, L. N.; Sun, K.; Chen, T.; Jiang, Z. H.; Cheng, T.; Goddard Ⅲ, W. A. Surface ligand promotion of carbon dioxide reduction through stabilizing chemisorbed reactive intermediates. J. Phys. Chem. Lett. 2018, 9, 3057–3061.

143

Gao, M. Y.; Zhu, Y. M.; Liu, Y. Y.; Wu, K. J.; Lu, H. F.; Tang, S. Y.; Liu, C. J.; Yue, H. R.; Liang, B.; Yan, J. Y. The role of adsorbed oleylamine on gold catalysts during synthesis for highly selective electrocatalytic reduction of CO2 to CO. Chem. Commun. 2020, 56, 7021–7024.

144

Kim, C.; Eom, T.; Jee, M. S.; Jung, H.; Kim, H.; Min, B. K.; Hwang, Y. J. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles. ACS Catal. 2017, 7, 779–785.

145

Fang, Y. X.; Flake, J. C. Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 2017, 139, 3399–3405.

146

Chen, Y.; Fan, Z. X.; Wang, J.; Ling, C. Y.; Niu, W. X.; Huang, Z. Q.; Liu, G. G.; Chen, B.; Lai, Z. C.; Liu, X. Z. et al. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: A crystal phase-dependent study. J. Am. Chem. Soc. 2020, 142, 12760–12766.

147

Ma, X. M.; Shen, Y. L.; Yao, S.; An, C. H.; Zhang, W. Q.; Zhu, J. F.; Si, R.; Guo, C. X.; An, C. H. Core-shell nanoporous AuCu3@Au monolithic electrode for efficient electrochemical CO2 reduction. J. Mater. Chem. A 2020, 8, 3344–3350.

148

Valenti, M.; Prasad, N. P.; Kas, R.; Bohra, D.; Ma, M.; Balasubramanian, V.; Chu, L.; Gimenez, S.; Bisquert, J.; Dam, B. et al. Suppressing H2 evolution and promoting selective CO2 electroreduction to CO at low overpotentials by alloying Au with Pd. ACS Catal. 2019, 9, 3527–3536.

149

Lv, H. F.; Liu, T. F.; Zhang, X. M.; Song, Y. F.; Matsumoto, H.; Ta, N.; Zeng, C. B.; Wang, G. X.; Bao, X. H. Atomic-scale insight into exsolution of CoFe alloy nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3–δ with Efficient CO2 Electrolysis. Angew. Chem. , Int. Ed. 2020, 59, 15968–15973.

150

Kim, C.; Dionigi, F.; Beermann, V.; Wang, X. L.; Möller, T.; Strasser, P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 2019, 31, e1805617.

151

Yin, Z.; Gao, D. F.; Yao, S. Y.; Zhao, B.; Cai, F.; Lin, L. L.; Tang, P.; Zhai, P.; Wang, G. X.; Ma, D. et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 2016, 27, 35–43.

152

Cai, F.; Gao, D. F.; Si, R.; Ye, Y. F.; He, T.; Miao, S.; Wang, G. X.; Bao, X. H. Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO2 electroreduction to formate. Electrochem. Commun. 2017, 76, 1–5.

153

Sun, K.; Cheng, T.; Wu, L. N.; Hu, Y. F.; Zhou, J. G.; Maclennan, A.; Jiang, Z. H.; Gao, Y. Z.; Goddard Ⅲ, W. A.; Wang, Z. J. Ultrahigh mass activity for carbon dioxide reduction enabled by gold-iron core-shell nanoparticles. J. Am. Chem. Soc. 2017, 139, 15608–15611.

154

Lee, J. H.; Kattel, S.; Jiang, Z.; Xie, Z. H.; Yao, S. Y.; Tackett, B. M.; Xu, W. Q.; Marinkovic, N. S.; Chen, J. G. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat. Commun. 2019, 10, 3724.

155

Kortlever, R.; Peters, I.; Koper, S.; Koper, M. T. M. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd–Pt nanoparticles. ACS Catal. 2015, 5, 3916–3923.

156

Yuan, X. T.; Zhang, L.; Li, L. L.; Dong, H.; Chen, S.; Zhu, W. J.; Hu, C. L.; Deng, W. Y.; Zhao, Z. J.; Gong, J. L. Ultrathin Pd-Au shells with controllable alloying degree on Pd nanocubes toward carbon dioxide reduction. J. Am. Chem. Soc. 2019, 141, 4791–4794.

157

Zhou, Y.; Zhou, R.; Zhu, X. R.; Han, N.; Song, B.; Liu, T. C.; Hu, G. Z.; Li, Y. F.; Lu, J.; Li, Y. G. Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate. Adv. Mater. 2020, 32, 2000992.

158

Bai, X. F.; Chen, W.; Zhao, C. C.; Li, S. G.; Song, Y. F.; Ge, R. P.; Wei, W.; Sun, Y. H. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew. Chem. , Int. Ed. 2017, 56, 12219–12223.

159

Zhu, W. J.; Zhang, L.; Yang, P. P.; Chang, X. X.; Dong, H.; Li, A.; Hu, C. L.; Huang, Z. Q.; Zhao, Z. J.; Gong, J. L. Morphological and compositional design of Pd-Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction. Small 2018, 14, 1703314.

160

Lee, S.; Park, G.; Lee, J. Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 2017, 7, 8594–8604.

161

Yang, Y.; Ajmal, S.; Feng, Y. Q.; Li, K. J.; Zheng, X. Z.; Zhang, L. W. Insight into the formation and transfer process of the first intermediate of CO2 reduction over Ag-decorated dendritic Cu. Chem. Eur. J. 2020, 26, 4080–4089.

162

Zeng, J. C.; Zhang, W. B.; Yang, Y.; Li, D.; Yu, X.; Gao, Q. S. Pd-Ag alloy electrocatalysts for CO2 reduction: Composition tuning to break the scaling relationship. ACS Appl. Mater. Interfaces 2019, 11, 33074–33081.

163

Hoang, T. T. H.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 2018, 140, 5791–5797.

164

Lamaison, S.; Wakerley, D.; Blanchard, J.; Montero, D.; Rousse, G.; Mercier, D.; Marcus, P.; Taverna, D.; Giaume, D.; Mougel, V. et al. High-current-density CO2-to-CO electroreduction on Ag-alloyed Zn dendrites at elevated pressure. Joule 2020, 4, 395–406.

165

Chatterjee, S.; Griego, C.; Hart, J. L.; Li, Y. W.; Taheri, M. L.; Keith, J.; Snyder, J. D. Free standing nanoporous palladium alloys as CO poisoning tolerant electrocatalysts for the electrochemical reduction of CO2 to formate. ACS Catal. 2019, 9, 5290–5301.

166

Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

167

Kim, J. H.; Woo, H.; Choi, J.; Jung, H. W.; Kim, Y. T. CO2 electroreduction on Au/TiC: Enhanced activity due to metal–support interaction. ACS Catal. 2017, 7, 2101–2106.

168

Li, N.; Chen, X. Z.; Ong, W. J.; MacFarlane, D. R.; Zhao, X. J.; Cheetham, A. K.; Sun, C. H. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 2017, 11, 10825–10833.

169

Mota, F. M.; Nguyen, D. L. T.; Lee, J. E.; Piao, H. Y.; Choy, J. H.; Hwang, Y. J.; Kim, D. H. Toward an effective control of the H2 to CO ratio of syngas through CO2 electroreduction over immobilized gold nanoparticles on layered titanate nanosheets. ACS Catal. 2018, 8, 4364–4374.

Nano Research
Pages 3795-3809
Cite this article:
Li Z, Wu R, Zhao L, et al. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Research, 2021, 14(11): 3795-3809. https://doi.org/10.1007/s12274-021-3363-6
Topics:

1065

Views

100

Crossref

95

Web of Science

96

Scopus

16

CSCD

Altmetrics

Received: 02 January 2021
Revised: 21 January 2021
Accepted: 23 January 2021
Published: 31 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return