AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The achievement of red upconversion lasing for highly stable perovskite nanocrystal glasses with the assistance of anion modulation

Mengfeifei Jin1,§Wei Gao3,§Xiaojuan Liang1Ying Fang1Siufung Yu3,4Ting Wang2,3( )Weidong Xiang1( )
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999999, China
The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518052, China

§ Mengfeifei Jin and Wei Gao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Perovskite materials have received extensive attention as optical gain media. However, it is tough to realize lasing using such materials on account of the unstable structure of MAPbI3/CsPbI3 nanocrystals (NCs), and the propensity for mixed-halogen perovskites to undergo phase decomposition into bromine-rich and iodide-rich regions under intense laser irradiation. To solve this issue, we fabricated CsPbX3 (X = Br, I) NCs, which were embedded into a glassy matrix with high stability. In addition, by doping Br- ions into the CsPbI3 NCs to partially replace I- ions, the optical efficiency and the optical gain properties were found to be significantly improved. Here, under 800 nm pulse laser excitation, red random lasing was realized with the assistance of such anion modulation. Moreover, we demonstrate that the perovskite NCs glasses (PNG) show strong water stability after immersion in water for one week, seeding a promise for application in high-definition (HD) displays and photonic devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3364_MOESM1_ESM.pdf (1.6 MB)

References

[1]
Li, B.; Zhang, Y. N.; Fu, L.; Yu, T.; Zhou, S. J.; Zhang, L. Y.; Yin, L. W. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 2018, 9, 1076.
[2]
Wang, M.; Deng, K. M.; Meng, L. X.; Li, L. Bifunctional ytterbium (III) chloride driven low-temperature synthesis of stable α-CsPbI3 for high-efficiency inorganic perovskite solar cells. Small Methods 2020, 4, 1900652.
[3]
Sun, H. R.; Zhang, J.; Gan, X. L.; Yu, L. T.; Yuan, H. B.; Shang, M. H.; Lu, C. J.; Hou, D. G.; Hu, Z. Y.; Zhu, Y. J. et al. Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells. Adv. Energy Mater. 2019, 9, 1900896.
[4]
Yang, Y. Q.; Wu, J. H.; Wang, X. B.; Guo, Q. Y.; Liu, X. P.; Sun, W. H.; Wei, Y. L.; Huang, Y. F.; Lan, Z.; Huang, M. L. et al. Suppressing vacancy defects and grain boundaries via Ostwald ripening for high-performance and stable perovskite solar cells. Adv. Mater. 2020, 32, 1904347.
[5]
Yang, J. N.; Song, Y.; Yao, J. S.; Wang, K. H.; Wang, J. J.; Zhu, B. S.; Yao, M. M.; Rahman, S. U.; Lan, Y. F.; Fan, F. J. et al. Potassium bromide surface passivation on CsPbI3-xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes. J. Am. Chem. Soc. 2020, 142, 2956-2967.
[6]
Chen, X.; Li, D. Y.; Pan, G. C.; Zhou, D. L.; Xu, W.; Zhu, J. Y.; Wang, H.; Chen, C.; Song, H. W. All-inorganic perovskite quantum dot/TiO2 inverse opal electrode platform: Stable and efficient photoelectrochemical sensing of dopamine under visible irradiation. Nanoscale 2018, 10, 10505-10513.
[7]
Zhou, N. J.; Bekenstein, Y.; Eisler, C. N.; Zhang, D. D.; Schwartzberg, A. M.; Yang, P. D.; Alivisatos, A. P.; Lewis, J. A. Perovskite nanowire- block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv. 2019, 5, eaav8141.
[8]
Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.
[9]
Sutherland, B. R.; Hoogland, S.; Adachi, M. M.; Wong, C. T. O.; Sargent, E. H. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 2014, 8, 10947-10952.
[10]
Xing, G.; Mathews, N.; Lim, S. S.; Yantara, N.; Liu, X.; Sabba, D.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 2014, 13, 476-480.
[11]
Wei, Y.; Cheng, Z. Y.; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310-350.
[12]
Trots, D. M.; Myagkota, S. V. High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids 2008, 69, 2520-2526.
[13]
Zeng, Q. S.; Zhang, X. Y.; Liu, C. M.; Feng, T. L.; Chen, Z. L.; Zhang, W.; Zheng, W. T.; Zhang, H.; Yang, B. Inorganic CsPbI2Br perovskite solar cells: The progress and perspective. Solar RRL 2019, 3, 1800239.
[14]
Xiu, J. W.; Dong, B.; Driscoll, E.; Feng, X. Y.; Muhammad, A.; Chen, S. Q.; Du, Z.; Zhu, Y. D.; Zhang, Z.; Tang, Z. H. et al. Degradation induced lattice anchoring self-passivation in CsPbI3-xBrx. J. Mater. Chem. A 2020, 8, 9963-9969.
[15]
Hu, Y. Q.; Bai, F.; Liu, X. B.; Ji, Q. M.; Miao, X. L.; Qiu, T.; Zhang, S. F. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2017, 2, 2219-2227.
[16]
Lee, J. W.; Seol, D. J.; Cho, A. N.; Park, N. G. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 2014, 26, 4991-4998.
[17]
Roh, K.; Zhao, L. F.; Gunnarsson, W. B.; Xiao, Z. G.; Jia, Y. F.; Giebink, N. C.; Rand, B. P. Widely tunable, room temperature, single-mode lasing operation from mixed-halide perovskite thin films. ACS Photonics 2019, 6, 3331-3337.
[18]
Brenner, P.; Bar-On, O.; Jakoby, M.; Allegro, I.; Richards, B. S.; Paetzold, U. W.; Howard, I. A.; Scheuer, J.; Lemmer, U. Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites. Nat. Commun. 2019, 10, 988.
[19]
Lin, H.; Mao, J.; Qin, M. C.; Song, Z. L.; Yin, W. J.; Lu, X. H.; Choy, W. C. H. Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs. Nanoscale 2019, 11, 16907-16918.
[20]
Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.
[21]
Li, X. M.; Wang, Y.; Sun, H. D.; Zeng, H. B. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv. Mater. 2017, 29, 1701185.
[22]
Pan, J.; Sarmah, S. P.; Murali, B.; Dursun, I.; Peng, W.; Parida, M. R.; Liu, J. K.; Sinatra, L.; Alyami, N.; Zhao, C. et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission. J. Phys. Chem. Lett. 2015, 6, 5027-5033.
[23]
Yuan, S.; Chen, D. Q.; Li, X. Y.; Zhong, J. S.; Xu, X. H. In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Interfaces 2018, 10, 18918-18926.
[24]
Chen, L. J.; Dai, J. H.; Lin, J. D.; Mo, T. S.; Lin, H. P.; Yeh, H. C.; Chuang, Y. C.; Jiang, S. A.; Lee, C. R. Wavelength-tunable and highly stable perovskite-quantum-dot-doped lasers with liquid crystal lasing cavities. ACS Appl. Mater. Interfaces 2018, 10, 33307-33315.
[25]
De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071-2081.
[26]
Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394-405.
[27]
Hu, Z. P.; Liu, Z. Z.; Bian, Y.; Li, S. Q.; Tang, X. S.; Du, J.; Zang, Z. G.; Zhou, M.; Hu, W.; Tian, Y. X. et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/SiO2 nanocrystals with excellent stability. Adv. Opt. Mater. 2018, 6, 1700997.
[28]
Chen, Y.; Yu, M. H.; Ye, S.; Song, J.; Qu, J. L. All-inorganic CsPbBr3 perovskite quantum dots embedded in dual-mesoporous silica with moisture resistance for two-photon-pumped plasmonic nanoLasers. Nanoscale 2018, 10, 6704-6711.
[29]
Dhanker, R.; Brigeman, A. N.; Larsen, A. V.; Stewart, R. J.; Asbury, J. B.; Giebink, N. C. Random lasing in organo-lead halide perovskite microcrystal networks. Appl. Phys. Lett. 2014, 105, 151112.
[30]
Liu, S.; Sun, W. Z.; Li, J. K.; Gu, Z. Y.; Wang, K. Y.; Xiao, S. M.; Song, Q. H. Random lasing actions in self-assembled perovskite nanoparticles. Opt. Eng. 2016, 55, 057102.
[31]
Fan, T.; Lü, J. T.; Chen, Y. H.; Yuan, W. X.; Huang, Y. F. Random lasing in cesium lead bromine perovskite quantum dots film. J. Mater. Sci.: Mater. Electron. 2019, 30, 1084-1088.
[32]
Zhang, H. L.; Yuan, L.; Chen, Y.; Zhang, Y. Q.; Yu, Y. X.; Liang, X. J.; Xiang, W. D.; Wang, T. Amplified spontaneous emission and random lasing using CsPbBr3 quantum dot glass through controlling crystallization. Chem. Commun. 2020, 56, 2853-2856.
[33]
Dutta, A.; Dutta, S. K.; Das Adhikari, S.; Pradhan, N. Phase-stable CsPbI3 nanocrystals: The reaction temperature matters. Angew. Chem. 2018, 57, 9083-9087.
[34]
Liu, Y. F.; Silver, J.; Xie, R. J.; Zhang, J. H.; Xu, H. W.; Shao, H. Z.; Jiang, J.; Jiang, H. C. An excellent cyan-emitting orthosilicate phosphor for NUV-pumped white LED application. J. Mater. Chem. C 2017, 5, 12365-12377.
[35]
Mi, Y.; Zhong, Y. G.; Zhang, Q.; Liu, X. F. Continuous-wave pumped perovskite lasers. Adv. Opt. Mater. 2019, 7, 1900544.
[36]
Wei, Q.; Li, X. J.; Liang, C.; Zhang, Z. P.; Guo, J.; Hong, G.; Xing, G. C.; Huang, W. Recent progress in metal halide perovskite micro- and nanolasers. Adv. Opt. Mater. 2019, 7, 1900080.
[37]
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[38]
Chen, J.; Du, W. N.; Shi, J. W.; Li, M. L.; Wang, Y.; Zhang, Q.; Liu, X. F. Perovskite quantum dot lasers. InfoMat 2020, 2, 170-183.
[39]
Liao, Q.; Jin, X.; Fu, H. B. Tunable halide perovskites for miniaturized solid-state laser applications. Adv. Opt. Mater. 2019, 7, 1900099.
[40]
Xu, X. H.; Lu, W.; Wang, T.; Gao, W.; Yu, X.; Qiu, J. B.; Yu, S. F. Deep UV random lasing from NaGdF4:Yb3+, Tm3+ upconversion nanocrystals in amorphous borosilicate glass. Opt. Lett. 2020, 45, 3095-3098.
[41]
Gaio, M.; Peruzzo, M.; Sapienza, R. Tuning random lasing in photonic glasses. Opt. Lett. 2015, 40, 1611-1614.
[42]
Li, S. Q.; Lei, D. Y.; Ren, W.; Guo, X. Y.; Wu, S. F.; Zhu, Y.; Rogach, A. L.; Chhowalla, M.; Jen, A. K. Water-resistant perovskite nanodots enable robust two-photon lasing in aqueous environment. Nat. Commun. 2020, 11, 1192.
[43]
Yu, S. F.; Yuen, C.; Lau, S. P.; Lee, H. W. Zinc oxide thin-film random lasers on silicon substrate. Appl. Phys. Lett. 2004, 84, 3244-3246.
[44]
Zhang, H. L.; Jin, M. F. F.; Liu, X. D.; Zhang, Y. Q.; Yu, Y. X.; Liang, X. J.; Xiang, W. D.; Wang, T. The preparation and up-conversion properties of full spectrum CsPbX3 (X = Cl, Br, I) quantum dot glasses. Nanoscale 2019, 11, 18009-18014.
[45]
Jiang, Y.; Wang, X.; Pan, A. L. Properties of excitons and photogenerated charge carriers in metal halide perovskites. Adv. Mater. 2019, 31, 1806671.
[46]
Diroll, B. T.; Talapin, D. V.; Schaller, R. D. Violet-to-blue gain and lasing from colloidal CdS nanoplatelets: Low-threshold stimulated emission despite low photoluminescence quantum yield. ACS Photonics 2017, 4, 576-583.
Nano Research
Pages 2861-2866
Cite this article:
Jin M, Gao W, Liang X, et al. The achievement of red upconversion lasing for highly stable perovskite nanocrystal glasses with the assistance of anion modulation. Nano Research, 2021, 14(8): 2861-2866. https://doi.org/10.1007/s12274-021-3364-5
Topics:

728

Views

20

Crossref

21

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 02 September 2020
Revised: 24 January 2021
Accepted: 25 January 2021
Published: 28 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return