AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-plane heterostructured Ag2S-In2S3 atomic layers enabling boosted CO2 photoreduction into CH4

Weiwei Shao1,§Shumin Wang1,§Juncheng Zhu1,§Xiaodong Li1Xingchen Jiao1Yang Pan1Yongfu Sun1,2( )Yi Xie1,2
Hefei National Laboratory for Physical Sciences at Microscale, CAS Centre for Excellence in NanoscienceNational Synchrotron Radiation Laboratory, University of Science and Technology of ChinaHefei230026China
Institute of Energy, Hefei Comprehensive National Science CenterHefei230031China

§ Weiwei Shao, Shumin Wang, and Juncheng Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Sluggish separation and migration kinetics of the photogenerated carriers account for the low-efficiency of CO2 photoreduction into CH4. Design and construction two-dimensional (2D) in-plane heterostructures demonstrate to be an appealing approach to address above obstacles. Herein, we fabricate 2D in-plane heterostructured Ag2S-In2S3 atomic layers via an ion-exchange strategy. Photoluminescence spectra, time-resolved photoluminescence spectra, and photoelectrochemical measurements firmly affirm the optimized carrier dynamics of the In2S3 atomic layers after the introduction of in-plane heterostructure. In-situ Fourier transform infrared spectroscopy spectra and density functional theory (DFT) calculations disclose the in-plane heterostructure contributes to CO2 activation and modulates the adsorption strength of CO* intermediates to facilitate the formation of CHO* intermediates, which are further protonated to CH4. In consequence, the in-plane heterostructure achieves the CH4 evolution rate of 20 μmol·g-1·h-1, about 16.7 times higher than that of the In2S3 atomic layers. In short, this work proves construction of in-plane heterostructures as a promising method for obtaining high-efficiency CO2-to-CH4 photoconversion properties.

Electronic Supplementary Material

Download File(s)
12274_2021_3365_MOESM1_ESM.pdf (3.1 MB)

References

1

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825-832.

2

Wagner, A.; Sahm, C. D.; Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 2020, 3, 775-786.

3

Ulmer, U.; Dingle, T.; Duchesne, P. N.; Morris, R. H.; Tavasoli, A.; Wood, T.; Ozin, G. A. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 2019, 10, 3169.

4

Kim, D.; Sakimoto, K. K.; Hong, D. C.; Yang, P. D. Artificial photosynthesis for sustainable fuel and chemical production. Angew. Chem., Int. Ed. 2015, 54, 3259-3266.

5

Ozin, G. A. Throwing new light on the reduction of CO2. Adv. Mater. 2015, 27, 1957-1963.

6

Jiao, X. C.; Zheng, K.; Liang, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 2020, 49, 6592-6604.

7

Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222-243.

8

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962-4179.

9

Wang, H.; Liu, F. C.; Fu, W.; Fang, Z. Y.; Zhou, W.; Liu, Z. Two-dimensional heterostructures: Fabrication, characterization, and application. Nanoscale 2014, 6, 12250-12272.

10

Han, A.; Zhang, Z. D.; Li, X. Y.; Wang, D. S.; Li, Y. D. Atomic thickness catalysts: Synthesis and applications. Small Methods 2020, 4, 2000248.

11

Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.

12

Cao, X. H.; Tan, C. L.; Zhang, X.; Zhao, W.; Zhang, H. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv. Mater. 2016, 28, 6167-6196.

13

Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177-2196.

14

Fu, J. W.; Liu, K.; Jiang, K. X.; Li, H. J. W.; An, P. D.; Li, W. Z.; Zhang, N.; Li, H. M.; Xu, X. W.; Zhou, H. Q. et al. Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4. Adv. Sci. 2019, 6, 1900796.

15

Li, X. D.; Wang, S. M.; Li, L.; Zu, X. L.; Sun, Y. F.; Xie, Y. Opportunity of atomically thin two-dimensional catalysts for promoting CO2 electroreduction. Acc. Chem. Res. 2020, 53, 2964-2974.

16

Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690-699.

17

Jiao, X. C.; Li, X. D.; Jin, X. Y.; Sun, Y. F.; Xu, J. Q.; Liang, L.; Ju, H. X.; Zhu, J. F.; Pan, Y.; Yan, W. S. et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 18044-18051.

18

Wang, J. J.; Lin, S.; Tian, N.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Nanostructured metal sulfides: Classification, modification strategy, and solar-driven CO2 reduction application. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.202008008.

19

Dan, M.; Zhang, Q.; Yu, S.; Prakash, A.; Lin, Y. H.; Zhou, Y. Noble-metal-free MnS/In2S3 composite as highly efficient visible light driven photocatalyst for H2 production from H2S. Appl. Catal. B: Environ. 2017, 217, 530-539.

20

Jiang, D. L.; Chen, L. L.; Xie, J. M.; Chen, M. Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition. Dalton Trans. 2014, 43, 4878-4885.

21

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

22

Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501-16509.

23

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

24

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311-1315.

25

An, X. Q.; Yu, J. C.; Wang, F.; Li, C. H.; Li, Y. C. One-pot synthesis of In2S3 nanosheets/graphene composites with enhanced visible-light photocatalytic activity. Appl. Catal. B: Environ. 2013, 129, 80-88.

26

Feng, J. J.; Li, X. H.; Shi, Z. J.; Zheng, C.; Li, X. W.; Leng, D. Y.; Wang, Y. M.; Liu, J.; Zhu, L. J. 2D ductile transition metal chalcogenides (TMCs): Novel high-performance Ag2S nanosheets for ultrafast photonics. Adv. Opt. Mater. 2020, 8, 1901762.

27

Li, R. J.; Tang, L. B.; Zhao, Q.; Ly, T. H.; Teng, K. S.; Li, Y.; Hu, Y. B.; Shu, C.; Lau, S. P. In2S3 quantum dots: Preparation, properties and optoelectronic application. Nanoscale Res. Lett. 2019, 14, 161.

28

Sadovnikov, S. I.; Gerasimov, E. Y. Direct TEM observation of the "acanthite α-Ag2S-argentite β-Ag2S" phase transition in a silver sulfide nanoparticle. Nanoscale Adv. 2019, 1, 1581-1588.

29

Huang, W. J.; Gan, L.; Yang, H. T.; Zhou, N.; Wang, R. Y.; Wu, W. H.; Li, H. Q.; Ma, Y.; Zeng, H. B.; Zhai, T. Y. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater. 2017, 27, 1702448.

30

Matsumoto, Y. Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. J. Solid State Chem. 1996, 126, 227-234.

31

Xu, M.; Ye, T. N.; Dai, F.; Yang, J. D.; Shen, J. M.; He, Q. Q.; Chen, W. L.; Liang, N.; Zai, J. T.; Qian, X. F. Rationally designed n-n heterojunction with highly efficient solar hydrogen evolution. ChemSusChem 2015, 8, 1218-1225.

32

Xiao, Y. J.; Qi, Y.; Wang, X. L.; Wang, X. Y.; Zhang, F. X.; Li, C. Visible-light-responsive 2D cadmium-organic framework single crystals with dual functions of water reduction and oxidation. Adv. Mater. 2018, 30, 1803401.

33

Low, J. X.; Jiang, C. J.; Cheng, B.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. A review of direct Z-scheme photocatalysts. Small Methods 2017, 1, 1700080.

34

Yang, J.; Zhu, Q. X.; Xie, T. P.; Wang, J. K.; Peng, Y.; Wang, Y. J.; Liu, C. L.; Xu, L. J. Insights into interface charge extraction in a noble-metal-free doped Z-scheme NiO@BiOCl heterojunction. Catalysts 2020, 10, 958.

35

Low, J. X.; Dai, B. Z.; Tong, T.; Jiang, C. J.; Yu, J. G. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981.

36

Nayak, S.; Parida, K. M. Deciphering Z-scheme charge transfer dynamics in heterostructure NiFe-LDH/N-rGO/g-C3N4 nanocomposite for photocatalytic pollutant removal and water splitting reactions. Sci. Rep. 2019, 9, 2458.

37

Jin, L.; Seifitokaldani, A. In situ spectroscopic methods for electrocatalytic CO2 reduction. Catalysts 2020, 10, 481.

38

Heidary, N.; Ly, K. H.; Kornienko, N. Probing CO2 conversion chemistry on nanostructured surfaces with Operando vibrational spectroscopy. Nano Lett. 2019, 19, 4817-4826.

39

Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365-384.

40

Li, Y. Y.; Fan, J. S.; Tan, R. Q.; Yao, H. C.; Peng, Y.; Liu, Q. C.; Li, Z. J. Selective photocatalytic reduction of CO2 to CH4 modulated by chloride modification on Bi2WO6 nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 54507-54516.

Nano Research
Pages 4520-4527
Cite this article:
Shao W, Wang S, Zhu J, et al. In-plane heterostructured Ag2S-In2S3 atomic layers enabling boosted CO2 photoreduction into CH4. Nano Research, 2021, 14(12): 4520-4527. https://doi.org/10.1007/s12274-021-3365-4
Topics:

770

Views

33

Crossref

30

Web of Science

34

Scopus

1

CSCD

Altmetrics

Received: 28 December 2020
Revised: 25 January 2021
Accepted: 26 January 2021
Published: 02 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return