AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Modify Cd3As2 nanowires with sulfur to fabricate self-powered NIR photodetectors with enhanced performance

Yongxu Yan1,2Wenhao Ran1,2Zhexin Li1,2Linlin Li1,2Zheng Lou1( )Guozhen Shen1,2( )
State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors, Chinese Academy of Sciences, ,Beijing,100083,China;
Center of Materials Science and Optoelectronic Engineering,University of Chinese Academy of Sciences,Beijing,100049,China;
Show Author Information

Graphical Abstract

Abstract

Cd3As2 nanowires (NWs) have great potential in the near-infrared (NIR) photodetection field due to their excellent optoelectronic properties as a typical Dirac semimetal. However, the existence of surface oxidization limits their photoresponse performance for practical applications. Here, we modified the surface of Cd3As2 NWs with sulfur to prevent surface oxidizing and optimize the bandgap structure to improve the photoresponse performance. The S-modified Cd3As2 samples existed as core/shell Cd3As2/CdS NWs and the corresponding single NW device showed a responsivity of 0.95 A/W in the NIR band at a 0 V bias, which is three orders of magnitude higher than that of an unmodified NW. This study provides an efficient and universally applicable way to prevent semimetals nanostructures from oxidizing and promote their optoelectronic properties.

Electronic Supplementary Material

Download File(s)
12274_2021_3367_MOESM1_ESM.pdf (2 MB)

References

1

Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

2

Xu, H. H.; Li, J.; Leung, B. H. K.; Poon, C. C. Y.; Ong, B. S.; Zhang, Y. T.; Zhao, N. A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction. Nanoscale 2013, 5, 11850–11855.

3

Chai, R. Q.; Chen, Y. F.; Zhong, M.; Yang, H.; Yan, F. G.; Peng, M.; Sun, Y. J.; Wang, K. Y.; Wei, Z. M.; Hu, W. D. et al. Non-layered ZnSb nanoplates for room temperature infrared polarized photodetectors. J. Mater. Chem. C 2020, 8, 6388–6395.

4

Baeg, K. J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295.

5

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

6

Ma, L.; Hu, W.; Zhang, Q. L.; Ren, P. Y.; Zhuang, X. J.; Zhou, H.; Xu, J. Y.; Li, H. L.; Shan, Z. P.; Wang, X. X. et al. Room-temperature near-infrared photodetectors based on single heterojunction nanowires. Nano Lett. 2014, 14, 694–698.

7

Landry, M. P.; Ando, H.; Chen, A. Y.; Cao, J. C.; Kottadiel, V. I.; Chio, L.; Yang, D.; Dong, J. Y.; Lu, T. K.; Strano, M. S. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nat. Nanotechnol. 2017, 12, 368–377.

8

Chen, S.; Lou, Z.; Chen, D.; Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 2018, 30, 1705400.

9

Hu, W.; Cong, H.; Huang, W.; Huang, Y.; Chen, L. J.; Pan, A. L.; Xue, C. L. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci. Appl. 2019, 8, 106.

10

Cong, H.; Yang, F.; Xue, C. L.; Yu, K.; Zhou, L.; Wang, N.; Cheng, B. W.; Wang, Q. M. Multilayer graphene-GeSn quantum well heterostructure SWIR light source. Small 2018, 14, 1704414.

11

Wu, J. H.; Lu, Y. H.; Feng, S. R.; Wu, Z. Q.; Lin, S. Y.; Hao, Z. Z.; Yao, T. Y.; Li, X. M.; Zhu, H. W.; Lin, S. S. The interaction between quantum dots and graphene: The applications in graphene-based solar cells and photodetectors. Adv. Funct. Mater. 2018, 28, 1804712.

12

Tian, W.; Sun, H. X.; Chen, L.; Wangyang, P. H.; Chen, X. R.; Xiong, J.; Li, L. Low-dimensional nanomaterial/Si heterostructure-based photodetectors. InfoMat. 2019, 1, 140–163.

13

Liang, F. X.; Wang, J. Z.; Li, Z. P.; Luo, L. B. Near-infrared-light photodetectors based on one-dimensional inorganic semiconductor nanostructures. Adv. Opt. Mater. 2017, 5, 1700081.

14

Lu, X. W.; Sun, L.; Jiang, P.; Bao, X. H. Progress of photodetectors based on the photothermoelectric effect. Adv. Mater. 2019, 31, 1902044.

15

Kenry; Duan, Y. K.; Liu, B. Recent advances of optical imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1802394.

16

Huo, N. J.; Konstantatos, G. Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 2018, 30, 1801164.

17

Wang, L. L.; Chen, S.; Li, W.; Wang, K.; Lou, Z.; Shen, G. Z. Grain-boundary-induced drastic sensing performance enhancement of polycrystalline-microwire printed gas sensors. Adv. Mater. 2019, 31, 1804583.

18

Yao, S. S.; Zhu, Y. Nanomaterial-enabled stretchable conductors: Strategies, materials and devices. Adv. Mater. 2015, 27, 1480–1511.

19

Sun, H.; Deng, J.; Qiu, L. B.; Fang, X.; Peng, H. S. Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ. Sci. 2015, 8, 1139–1159.

20

Gong, S.; Cheng, W. L. One-dimensional nanomaterials for soft electronics. Adv. Electron. Mater. 2017, 3, 1600314.

21

Liu, Z. K.; Zhou, B.; Zhang, Y.; Wang, Z. J.; Weng, H. M.; Prabhakaran, D.; Mo, S. K.; Shen, Z. X.; Fang, Z.; Dai, X. et al. Discovery of a three-dimensional topological dirac semimetal, Na3Bi. Science 2014, 343, 864–867.

22

Yang, Y. H.; Gao, Z.; Xue, H. R.; Zhang, L.; He, M. J.; Yang, Z. J.; Singh, R.; Chong, Y. D.; Zhang, B. L.; Chen, H. S. Realization of a three-dimensional photonic topological insulator. Nature 2019, 565, 622–626.

23

Nagaosa, N.; Morimoto, T.; Tokura, Y. Transport, magnetic and optical properties of Weyl materials. Nat. Rev. Mater. 2020, 5, 621–636.

24

Young, S. M.; Zaheer, S.; Teo, J. C. Y.; Kane, C. L.; Mele, E. J.; Rappe, A. M. Dirac semimetal in three dimensions. Phys. Rev. Lett. 2012, 108, 140405.

25

Conte, A. M.; Pulci, O.; Bechstedt, F. Electronic and optical properties of topological semimetal Cd3As2. Sci. Rep. 2017, 7, 45500.

26

Wang, L. X.; Li, C. Z.; Yu, D. P.; Liao, Z. M. Aharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires. Nat. Commun. 2016, 7, 10769.

27

Yuan, X.; Cheng, P. H.; Zhang, L. Q.; Zhang, C.; Wang, J. Y.; Liu, Y. W.; Sun, Q. Q.; Zhou, P.; Zhang, D. W.; Hu, Z. G. et al. Direct observation of landau level resonance and mass generation in Dirac semimetal Cd3As2 thin films. Nano Lett. 2017, 17, 2211–2219.

28

Omari, M.; Kouklin, N.; Lu, G. H.; Chen, J. H.; Gajdardziska-Josifovska, M. Fabrication of Cd3As2 nanowires by direct vapor-solid growth, and their infrared absorption properties. Nanotechnology 2008, 19, 105301.

29

Zhang, C.; Zhang, Y.; Yuan, X.; Lu, S. H.; Zhang, J. L.; Narayan, A.; Liu, Y. W.; Zhang, H. Q.; Ni, Z. L.; Liu, R. et al. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature 2019, 565, 331–336.

30

Uchida, M.; Nakazawa, Y.; Nishihaya, S.; Akiba, K.; Kriener, M.; Kozuka, Y.; Miyake, A.; Taguchi, Y.; Tokunaga, M.; Nagaosa, N. et al. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat. Commun. 2017, 8, 2274.

31

Duan, T. Y.; Lou, Z.; Shen, G. Z. Electrical transport and photoresponse properties of single-crystalline p-type Cd3As2 nanowires. Sci. China Phys. Mech. Astron. 2015, 58, 1–6.

32

Wang, Q. S.; Li, C. Z.; Ge, S. F.; Li, J. G.; Lu, W.; Lai, J. W.; Liu, X. F.; Ma, J. C.; Yu, D. P.; Liao, Z. M. et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2. Nano Lett. 2017, 17, 834–841.

33

Gao, J. F.; Cupolillo, A.; Nappini, S.; Bondino, F.; Edla, R.; Fabio, V.; Sankar, R.; Zhang, Y. W.; Chiarello, G.; Politano, A. Surface reconstruction, oxidation mechanism, and stability of Cd3As2. Adv. Funct. Mater. 2019, 29, 1900965.

34

Wei, S.; Lu, J.; Yu, W. C.; Zhang, H. B.; Qian, Y. T. Isostructural Cd3E2 (E = P, As) microcrystals prepared via a hydrothermal route. Cryst. Growth Des. 2006, 6, 849–853.

35

Ma, L. J.; Liu, M. C.; Jing, D. W.; Guo, L. J. Photocatalytic hydrogen production over CdS: Effects of reaction atmosphere studied by in situ Raman spectroscopy. J. Mater. Chem. A 2015, 3, 5701–5707.

36

Ali, M. N.; Gibson, Q.; Jeon, S.; Zhou, B. B.; Yazdani, A.; Cava, R. J. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene. Inorg. Chem. 2014, 53, 4062–4067.

37

Chai, R. Q.; Lou, Z.; Shen, G. Z. Highly flexible self-powered photodetectors based on core-shell Sb/CdS nanowires. J. Mater. Chem. C 2019, 7, 4581–4586.

38

Li, J.; Wang, Z. X.; Wen, Y.; Chu, J. W.; Yin, L.; Cheng, R. Q.; Lei, L.; He, P.; Jiang, C.; Feng, L. P. et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 2018, 28, 1706437.

39

Ran, W. H.; Wang, L. L.; Zhao, S. F.; Wang, D. P.; Yin, R. Y.; Lou, Z.; Shen, G. Z. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Adv. Mater. 2020, 32, 1908419.

40

Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

Nano Research
Pages 3379-3385
Cite this article:
Yan Y, Ran W, Li Z, et al. Modify Cd3As2 nanowires with sulfur to fabricate self-powered NIR photodetectors with enhanced performance. Nano Research, 2021, 14(10): 3379-3385. https://doi.org/10.1007/s12274-021-3367-2
Topics:

885

Views

9

Crossref

8

Web of Science

8

Scopus

2

CSCD

Altmetrics

Received: 14 January 2021
Revised: 24 January 2021
Accepted: 27 January 2021
Published: 03 March 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return